Neurotrophins have diverse functions in the CNS. Initially synthesized as precursors (proneurotrophins), they are cleaved to produce mature proteins, which promote neuronal survival and enhance synaptic plasticity by activating Trk receptor tyrosine kinases. Recent studies indicate that proneurotrophins serve as signalling molecules by interacting with the p75 neurotrophin receptor (p75NTR). Interestingly, proneurotrophins often have biological effects that oppose those of mature neurotrophins. Therefore, the proteolytic cleavage of proneurotrophins represents a mechanism that controls the direction of action of neurotrophins. New insights into the 'yin and yang' of neurotrophin activity have profound implications for our understanding of the role of neurotrophins in a wide range of cellular processes.
Pro- and mature brain-derived neurotrophic factor (BDNF) activate two distinct receptors: p75 neurotrophin receptor (p75(NTR)) and TrkB. Mature BDNF facilitates hippocampal synaptic potentiation through TrkB. Here we report that proBDNF, by activating p75(NTR), facilitates hippocampal long-term depression (LTD). Electron microscopy showed that p75(NTR) localized in dendritic spines, in addition to afferent terminals, of CA1 neurons. Deletion of p75(NTR) in mice selectively impaired the NMDA receptor-dependent LTD, without affecting other forms of synaptic plasticity. p75(NTR-/-) mice also showed a decrease in the expression of NR2B, an NMDA receptor subunit uniquely involved in LTD. Activation of p75(NTR) by proBDNF enhanced NR2B-dependent LTD and NR2B-mediated synaptic currents. These results show a crucial role for proBDNF-p75(NTR) signaling in LTD and its potential mechanism, and together with the finding that mature BDNF promotes synaptic potentiation, suggest a bidirectional regulation of synaptic plasticity by proBDNF and mature BDNF.
SUMMARY
The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3′ untranslated regions (3′UTR). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here we show that the short and long 3′UTR BDNF mRNAs are involved in different cellular functions. The short 3′UTR mRNAs are restricted to somata whereas the long 3′UTR mRNAs are also localized in dendrites. In a mouse mutant where the long 3′UTR is truncated, dendritic targeting of BDNF mRNAs is impaired. There is little BDNF in hippocampal dendrites despite normal levels of total BDNF protein. This mutant exhibits deficits in pruning and enlargement of dendritic spines, as well as selective impairment in long-term potentiation in dendrites, but not somata, of hippocampal neurons. These results provide insights into local and dendritic actions of BDNF and reveal a mechanism for differential regulation of subcellular functions of proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.