BackgroundThe modeling of interactions among transcription factors (TFs) and their respective target genes (TGs) into transcriptional regulatory networks is important for the complete understanding of regulation of biological processes. In the case of experimentally verified human TF-TG interactions, there is no database at present that explicitly provides such information even though many databases containing human TF-TG interaction data have been available. In an effort to provide researchers with a repository of experimentally verified human TF-TG interactions from which such interactions can be directly extracted, we present here the Human Transcriptional Regulation Interactions database (HTRIdb).DescriptionThe HTRIdb is an open-access database that can be searched via a user-friendly web interface and the retrieved TF-TG interactions data and the associated protein-protein interactions can be downloaded or interactively visualized as a network through the web version of the popular Cytoscape visualization tool, the Cytoscape Web. Moreover, users can improve the database quality by uploading their own interactions and indicating inconsistencies in the data. So far, HTRIdb has been populated with 284 TFs that regulate 18302 genes, totaling 51871 TF-TG interactions. HTRIdb is freely available at http://www.lbbc.ibb.unesp.br/htri.ConclusionsHTRIdb is a powerful user-friendly tool from which human experimentally validated TF-TG interactions can be easily extracted and used to construct transcriptional regulation interaction networks enabling researchers to decipher the regulation of biological processes.
Background: The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learningbased computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes.
We present a unified model for the growth of a population of cells. We propose that sigmoidal growth in cellular systems is a self-organised process due to long-range interactions among the cells. The interaction is mediated through diffusive substances produced by them. The model considers a competition between cell drive to replicate and inhibitory interactions that are modeled by a power law of the distance between the cells. The different classes of solutions (Logistic, Richards-like, Gompertz, and Exponential) are determined by a relation between the interaction length and the fractal dimension of the cellular structure.
Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research.
BackgroundThe genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.ResultsIn this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.ConclusionsWe were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.