Chemical vapor deposition methodologies are widely employed in a variety of fields such as microelectronics and glazing. Control of film growth and microstructure, and hence film properties, may be limited by precursor properties such as volatility or decomposition chemistry. In this paper we report how the incorporation of an applied electric field to aerosol assisted chemical vapor deposition reactions of vanadyl acetylacetonate in alcohols can influence the microstructure and growth of thin films of vanadium dioxide in unusual and sometimes unexpected ways. The films were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy.
Chemical vapor deposition methodologies are widely employed in a variety of fields such as microelectronics and glazing. Control of film growth and microstructure, and hence film properties, may be limited by precursor properties such as volatility or decomposition chemistry. In this paper we report how the incorporation of an applied electric field to AACVD reactions of vanadyl acetylacetonate in alcohols can influence the microstructure and growth of thin films of vanadium dioxide in unusual and sometimes unexpected ways. The films were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman Spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.