We present an algorithm which produces a decomposition of a regular cellular
complex with a discrete Morse function analogous to the Morse-Smale
decomposition of a smooth manifold with respect to a smooth Morse function. The
advantage of our algorithm compared to similar existing results is that it
works, at least theoretically, in any dimension. Practically, there are
dimensional restrictions due to the size of cellular complexes of higher
dimensions, though. We prove that the algorithm is correct in the sense that it
always produces a decomposition into descending and ascending regions of the
critical cells in a finite number of steps, and that, after a finite number of
subdivisions, all the regions are topological discs. The efficiency of the
algorithm is discussed and its performance on several examples is demonstrated.Comment: 23 pages, 12 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.