It is proposed to utilize the effect of negative mass for stabilization of the effective axial size of very dense and short electron bunches produced by photo-injector guns by using combined undulator and strong uniform magnetic fields. It has been shown that in the “abnormal” regime, an increase in the electron energy leads to a decrease in the axial velocity of the electron; due to the negative-mass effect, the Coulomb repulsion of electrons leads to their attraction and formation of a fairly stable and compact bunch “nucleus.” An undulator with a strong uniform magnetic field providing the negative-mass effect is designed for an experimental source of terahertz radiation. The use of the negative-mass regime in this experiment should result in a long-pulse coherent spontaneous undulator emission from a short dense moderately relativistic (5.5 MeV) photo-injector electron bunch with a high (up to 20%) efficiency and a narrow frequency spectrum.
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.
In this study, the detection of a low radar cross-section (RCS) target moving at a very high speed using a high-resolution millimeter-wave radar is presented. This real-time detection is based on the transmission of a continuous wave and heterodyning of the received signal reflected from the moving target. This type of detection enables one to extract the object’s movement characteristics, such as velocity and position, while in motion and also to extract its physical characteristics. In this paper, we describe the detection of a fired bullet using a radar operating at an extremely high-frequency band. This allowed us to employ a low sampling rate which enabled the use of inexpensive and straightforward equipment, including the use of small antennas that allow velocity detection at high resolution and with low atmospheric absorption.
We present a technique for the identification of human and animal movement and height using a low power millimeter-wave radar. The detection was based on the transmission of a continuous wave and heterodyning the received signal reflected from the target to obtain micro-Doppler shifts associated with the target structure and motion. The algorithm enabled the extraction of target signatures from typical gestures and differentiated between humans, animals, and other ‘still’ objects. Analytical expressions were derived using a pendulum model to characterize the micro-Doppler frequency shifts due to the periodic motion of the human and animal limbs. The algorithm was demonstrated using millimeter-wave radar operating in the W-band. We employed a time–frequency distribution to analyze the detected signal and classify the type of targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.