Earth’s forests harbor extensive biodiversity and are currently a major carbon sink. Forest conservation and restoration can help mitigate climate change; however, climate change could fundamentally imperil forests in many regions and undermine their ability to provide such mitigation. The extent of climate risks facing forests has not been synthesized globally nor have different approaches to quantifying forest climate risks been systematically compared. We combine outputs from multiple mechanistic and empirical approaches to modeling carbon, biodiversity, and disturbance risks to conduct a synthetic climate risk analysis for Earth’s forests in the 21st century. Despite large uncertainty in most regions we find that some forests are consistently at higher risk, including southern boreal forests and those in western North America and parts of the Amazon.
Hawliau Cyffredinol / General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The impact of allergens emitted by urban green spaces on health is one of the main disservices of ecosystems. The objective of this work is to establish the potential allergenic value of some tree species in urban environments, so that the allergenicity of green spaces can be estimated through application of the Index of Urban Green Zones Allergenicity (IUGZA). Multiple types of green spaces in Mediterranean cities were selected for the estimation of IUGZ. The results show that some of the ornamental species native to the Mediterranean are among the main causative agents of allergy in the population; in particular, Oleaceae, Cupressaceae, Fagaceae, and Platanus hispanica. Variables of the strongest impact on IUGZA were the bioclimatic characteristics of the territory and design aspects, such as the density of trees and the number of species. We concluded that the methodology to assess the allergenicity associated with urban trees and urban areas presented in this work opens new perspectives in the design and planning of urban green spaces, pointing out the need to consider the potential allergenicity of a species when selecting plant material to be used in cities. Only then can urban green areas be inclusive spaces, in terms of public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.