Platelet-activating factor caused rapid pulmonary vasoconstriction and edema in isolated lungs perfused with albumin-free salt solution devoid of formed blood elements. These effects may be due in part to the action of leukotrienes D4 and C4, which were identified by bioassay and high-pressure liquid chromatography in the lung effluent after stimulation by platelet-activating factor. These findings help illuminate some of the deleterious effects that platelet-activating factor elicits in anaphylactic reactions and possibly in other forms of lung injury.
The effects of dietary polyunsaturated fats on chronic hypoxic pulmonary hypertension were assessed in rats fed fish oil, corn oil, or a lower fat, "high-carbohydrate" diet (regular) beginning 1 mo before the start of hypoxia (0.4 atm, n = 30 for each). Mean pulmonary arterial pressures were lower in the chronically hypoxic rats fed fish oil (19.7 +/- 1.8 mm Hg) than in the rats fed corn oil (25.3 +/- 1.6 mm Hg) or regular diets (27.5 +/- 1.5 mm Hg, P less than 0.05). The fish oil diet increased lung eicosapentaenoic acid 50-fold and depleted lung arachidonic acid 60% (P less than 0.0001 for each). Lung thromboxane B2 and 6-ketoprostaglandin F1 alpha levels were lower, and platelet aggregation, in response to collagen, was reduced in rats fed fish oil. Chronically hypoxic rats fed fish oil had lower mortality rates than the other hypoxic rats. They also had lower blood viscosity, as well as less right ventricular hypertrophy and less peripheral extension of vascular smooth muscle to intra-acinar pulmonary arteries (P less than 0.05 for each). The mechanism by which dietary fish oil decreases pulmonary hypertension and vascular remodeling during chronic hypoxia remains uncertain. The finding that a fish oil diet can reduce the hemodynamic and morphological sequelae of chronic hypoxia may have therapeutic significance.
Newborn animals develop more severe hypoxic pulmonary hypertension than do adults, their vascular changes are greater, and both the hypertension and vascular changes occur more rapidly. We hypothesize that this differential developmentally controlled response may arise from either a difference in the type or quantity of endogenously secreted mediators in response to a given injury or a difference in the replicative and/or matrix-producing response of the vascular cells to physical or chemical stimuli. We investigated the effect of chronic hypoxia (14 days) on the proliferative and matrix-producing phenotype of the neonatal (14-day-old) pulmonary artery smooth muscle cell (SMC) and examined the heterogeneity and potential mechanisms responsible for this response. In situ hybridization studies demonstrated a remarkable change in the distribution of cells hybridizing with a tropoelastin cRNA probe after 14 days of hypoxia. Studies also demonstrated a population of SMC that did not hybridize with the elastin or collagen probes, indicating that the pulmonary artery contains SMC of multiple phenotypes and that the response to hypoxic and hemodynamic stress is not uniform for the various types. Bromodeoxyuridine labeling experiments indicated a large increase in DNA synthesis in hypertensive vessels, which, again, was not uniform either across or along the arterial wall. In vitro experiments with neonatal SMC suggested that hypoxia alone could not be responsible for the proliferative or matrix changes. These observations were supported by in vivo experiments in which coarctation of the left pulmonary artery, which markedly decreased pressure and flow to the left lung in hypoxic animals (14 days), resulted in significant decreases in collagen and elastin message levels in the left pulmonary artery distal to the coarctation compared with location-matched vessels from the right lung. Finally, we noted marked decreases in B-receptor density and adenyl cyclase activity in right atrial and pulmonary artery tissue from the chronically hypoxic animals. Decreases in the ability of the cell to produce adenosine 3',5'-cyclic monophosphate could significantly affect both the proliferative and matrix-producing potential of the SMC. We conclude that in vivo adaptation of the pulmonary artery SMC to chronic hypoxia includes changes in protein synthesis, cell proliferation, receptor expression, and enzyme activity. Further, there is a marked heterogeneity of these responses both across and along the arterial wall., hypoxia; phenotype; signal transductions; smooth muscle cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.