This research is adopting previous research by Bazart and Pickhardt (2010) with the intention to seek answer whether the effect of reward, tax audit, and penalty in improving compliance individual taxpayer will provide similar results in Indonesia. This research uses experimental research methodology. Experimental forms used in this study is the Time Series Design. The experimental results in Indonesia showed that the implementation of reward for taxpayers along with the implementation of a tax audit and penalty have a positive impact on tax compliance if a private person rather than simply applying the tax assessment and penalties only. In addition, the reward has an impact on the increasing number of contributions reported by an individual taxpayer. Where a positive effect on compliance reward makes taxpayer potential tax evasion becomes a potential obedient taxpayer taxes.
ABSTRACT Government cash management refers to the strategies for managing government money to fulfil governments’ obligations effectively. Failure to manage cash effectively risks undermining the implementation of government policies. The Greek crisis in 2010 is an example of a government failing to manage resources effectively. Despite the importance of effective government cash management, the literature on effective cash forecasting, as one of effective government cash management’s pillars, in the public sector is scarce. This paper addresses this shortcoming by developing a government cash forecasting model with an accuracy that meets acceptable levels of materiality for the cash manager. Using Indonesian government expenditures data in a case study, we utilise Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) to build cash forecasting models. The results provide evidence that the ANN method is superior then the ARIMA model to build a government cash forecasting model. ABSTRAK Pengelolaan Kas Pemerintah mengacu pada serangkaian strategi yang dilakukan oleh pemerintah dalam mengelola uang pemerintah secara efektif dalam rangka memenuhi kewajiban pemerintah. Kegagalan dalam mengelola uang pemerintah secara efektif beresiko mengganggu pelaksanaan kebijakan pemerintah. Krisis yang dialami Yunani di tahun 2010 merupakan salah satu contoh dampak yang dapat ditimbulkan dari tidak berhasilnya suatu pemerintahan mengelola sumber daya keuangan yang mereka milik secara efektif. Terlepas dari pentingnya mengelola kas pemerintah secara efektif, literatur tentang bagaimana menyusun prakiraan kas yang efektif – sebagai salah satu pilar Pengelolaan Kas Pemerintah – bagi sektor publik masih langka. Penelitian ini bertujuan untuk mengisi kesenjangan dalam literatur dengan memperkenalkan salah satu cara menyusun model prakiraan kas pemerintah dengan tingkat akurasi yang memenuhi harapan Pengelola Kas pemerintah. Dengan menggunakan data historis harian pengeluaran pemerintah Indonesia sebagai sebuah studi kasus, penelitian ini menggunakan Autoregressive Integrated Moving Average (ARIMA) dan Jaringan Syaraf Tiruan (JST) untuk menyusun model prakiraan kas. Penelitian ini menunjukkan bahwa penggunaan metode Jaringan Syaraf Tiruan (JST) dapat menjadi alternatif dalam menyusun model prakiraan kas pemerintah dengan tingkat akurasi model prakiraan kas yang lebih tinggi dibandingkan menggunakan ARIMA model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.