IntroductionCholera, a disease caused by Vibrio cholerae O1 and O139 remains an important public health problem globally. In the last decade, Kenya has experienced a steady increase of cholera cases. In 2009 alone, 11,769 cases were reported to the Ministry of Public Health and Sanitation. This study sought to describe the phenotypic characteristics of the isolated V. cholerae isolates.MethodsThis was a laboratory based cross-sectional study that involved isolates from different cholera outbreaks. Seventy six Vibrio cholerae O1 strains from different geographical areas were used to represent 2007 to 2010 cholera epidemics in Kenya, and were characterized by serotyping, biotyping, polymerase chain r(PCR), pulsed-field gel electrophoresis (PFGE) and ribotyping along with antimicrobial susceptibility testing.ResultsSeventy six Vibrio cholerae O1 strains from different geographical areas were used to represent 2007 to 2010 cholera epidemics in Kenya. Serotype Inaba was dominant (88.2%) compared to Ogawa. The isolates showed varying levels of antibiotic resistance ranging from 100% susceptible to tetracycline, doxycycline, ofloxacin, azithromycin, norfloxacin and ceftriaxone to 100% resistant to furazolidone, trimethoprim-sulfamethoxazole, polymyxin-B and streptomycin. The isolates were positive for ctxA, tcpA (El Tor), rtxC genes and were biotype El Tor variant harboring classical ctxB gene. All the isolates were classified as cholera toxin (CT) genotype 1 as they had mutation in the ctxB at positions 39 and 68. All the isolates had genetically similar NotI PFGE and BglI ribotype patterns. The absence of any observed variation is consistent with a clonal origin for all of the isolates.ConclusionKenya experienced cholera numerous outbreak from 2007-2010. The clinical Vibrio cholerae O1 isolates from the recent cholera epidemic were serotypes Inaba and Ogawa, Inaba being the predominant serotype. The Vibrio cholerae O1 strains were biotype El Tor variants that produce cholera toxin B (ctx B) of the classical type and were positive for ctxA, tcpA El Tor and rtxC genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.