BackgroundPhospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to non-alcoholic fatty liver disease, obesity and other metabolic disorders. However, in most cases, the biological significance of lipid disequilibrium remains unclear. Previously, we reported that Saccharomyces cerevisiae adapts to lipid disequilibrium by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR).ResultsSurprisingly, we observed certain ER-resident transmembrane proteins (TPs), which form part of the UPR programme, to be destabilised under lipid perturbation (LP). Among these, Sbh1 was prematurely degraded by fatty acid remodelling and membrane stiffening of the ER. Moreover, the protein translocon subunit Sbh1 is targeted for degradation through its transmembrane domain in an unconventional Doa10-dependent manner.ConclusionPremature removal of key ER-resident TPs might be an underlying cause of chronic ER stress in metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.