Neural network dysfunction may play an important role in Alzheimer's disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related proteins in the dentate gyrus, a region critically involved in learning and memory. Here, we report that hAPP mice have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks, which is associated with GABAergic sprouting, enhanced synaptic inhibition, and synaptic plasticity deficits in the dentate gyrus. Many Abeta-induced neuronal alterations could be simulated in nontransgenic mice by excitotoxin challenge and prevented in hAPP mice by blocking overexcitation. Aberrant increases in network excitability and compensatory inhibitory mechanisms in the hippocampus may contribute to Abeta-induced neurological deficits in hAPP mice and, possibly, also in humans with AD.
Many proteins suspected of causing neurodegenerative diseases exist in diverse assembly states. For most, it is unclear whether shifts from one state to another would be helpful or harmful. We used mutagenesis to change the assembly state of Alzheimer disease (AD)-associated amyloid- (A) peptides. In vitro, the "Arctic" mutation (AE22G) accelerated A fibrillization but decreased the abundance of nonfibrillar A assemblies, compared with wild-type A. In human amyloid precursor protein (hAPP) transgenic mice carrying mutations adjacent to A that increase A production, addition of the Arctic mutation markedly enhanced the formation of neuritic amyloid plaques but reduced the relative abundance of a specific nonfibrillar A assembly (A*56). Mice overexpressing Arctic mutant or wildtype A had similar behavioral and neuronal deficits when they were matched for A*56 levels but had vastly different plaque loads. Thus, A*56 is a likelier determinant of functional deficits in hAPP mice than fibrillar A deposits. Therapeutic interventions that reduce A fibrils at the cost of augmenting nonfibrillar A assemblies could be harmful. Alzheimer disease (AD)3 and many other neurodegenerative disorders are associated with the accumulation of abnormal protein assemblies in the central nervous system (CNS). Much evidence suggests that this association reflects a causal relationship in which the abnormal proteins actually trigger the neuronal dysfunction and degeneration that characterize these conditions (1-3). The prevalence of AD and other neurodegenerative proteinopathies is increasing rapidly around the world, most likely because of their age dependence, the increasing longevity of many populations, and the lack of effective strategies for treatment and prevention (4 -6). This alarming trend underlines the need to better understand the relationship between the accumulation of abnormal proteins in the CNS and the decline of neurological function.This relationship has been difficult to analyze in depth because proteins associated with neurodegenerative disorders can exist in diverse assembly states, and distinct assemblies can differ markedly in pathogenic potential. For example, the amyloid- (A) peptide, which seems to play a causal role in AD, can exist as monomers, low molecular weight oligomers (such as dimers and trimers), larger globular oligomers (such as A*56, A-derived diffusible ligands, amylospheroids, and globulomers), amyloid pores, protofibrils, fibrils, and amyloid plaques that contain densely packed A fibrils and a large number of other molecules and cellular elements (7-15). Which of these structures contributes most critically to neurological decline in AD is a matter of active study and debate that has important implications for therapeutic interventions. Studies of transgenic mice with neuronal expression of human amyloid precursor proteins (hAPP), from which A is released by proteolytic cleavage, suggest that nonfibrillar A assemblies are more critical than amyloid plaques in the pathogene...
Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA A receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA A receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age-and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.
Using therapeutic antibodies that need to cross the blood-brain barrier (BBB) to treat neurological disease is a difficult challenge. We have shown that bispecific antibodies with optimized binding to the transferrin receptor (TfR) that target β-secretase (BACE1) can cross the BBB and reduce brain amyloid-β (Aβ) in mice. Can TfR enhance antibody uptake in the primate brain? We describe two humanized TfR/BACE1 bispecific antibody variants. Using a human TfR knock-in mouse, we observed that anti-TfR/BACE1 antibodies could cross the BBB and reduce brain Aβ in a TfR affinity-dependent fashion. Intravenous dosing of monkeys with anti-TfR/BACE1 antibodies also reduced Aβ both in cerebral spinal fluid and in brain tissue, and the degree of reduction correlated with the brain concentration of anti-TfR/BACE1 antibody. These results demonstrate that the TfR bispecific antibody platform can robustly and safely deliver therapeutic antibody across the BBB in the primate brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.