Zebrafish with defective Nodal signaling have a phenotype analogous to the fatal human birth defect anencephaly, which is caused by an open anterior neural tube. Previous work in our laboratory found that anterior open neural tube defects in Nodal signaling mutants were caused by defects in mesendodermal/mesodermal tissue. Defects in these mutants are already apparent at neural plate stage, before the neuroepithelium starts to fold into a tube. Consistent with this, we found that the requirement for Nodal signaling maps to mid-late blastula stages. This timing correlates with the timing of prechordal plate mesendoderm and anterior mesoderm induction, suggesting these tissues act to promote neurulation. To further identify tissues important for neurulation, we took advantage of the variable phenotypes in Nodal signaling-deficient sqt mutant and Lefty1-overexpressing embryos. Statistical analysis indicated a strong, positive correlation between a closed neural tube and presence of several mesendoderm/mesoderm-derived tissues (hatching glands, cephalic paraxial mesoderm, notochord, and head muscles). However, the neural tube was closed in a subset of embryos that lacked any one of these tissues. This suggests that several types of Nodal-induced mesendodermal/mesodermal precursors are competent to promote neurulation.
Zebrafish in our laboratory are usually bred by removing the fish from the recirculating aquatic system and placing them into 1-2 L spawning tanks. These spawning tanks consist of a bottom reservoir, a lid, and an insert that fits in closely into the bottom reservoir. When the fish breed, the eggs fall through holes of the insert and into the reservoir, thus preventing them from being cannibalized. Because fish in these spawning tanks are not fed and do not get fresh water, they are bred only once a week. During a period where we had high demand for embryos, we instead tried breeding the fish for multiple consecutive days on the recirculating system. Fish were placed into the spawning insert as usual, but the insert was placed into the home tank instead of into the bottom reservoir. We found that there was no significant difference in the number of fertilized eggs produced between the spawning tank and home tank breeding methods. Further, the fish in the home tanks regularly produced fertile embryos over a 28-day time course, with the highest number of eggs per pair produced by the tank with only one pair of adult fish. This method is time-saving as fish bred in home tanks only require to be set up once. It is also an effective way to collect embryos over long periods from the same pair or group of fish and to more easily obtain embryos from stocks with low spawning frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.