The main concern pertaining to the safety of Gadolinium(III) Based Contrast Agents (GBCAs) is the toxicity caused by the unchelated ion, which may be inadvertently present in the solution due most commonly, to excess unreacted starting material or dissociation of the complexes. Detecting the aqueous free ion during the synthesis and preparation of GBCA solutions is therefore instrumental in ensuring the safety of the agents. This paper reports the development of a sensitive fluorogenic sensor for aqueous unchelated Gadolinium(III) (Gd(III)). Our design utilizes single-stranded oligodeoxynucleotides with a specific sequence of 44 bases as the targeting moiety. The fluorescence-based assay may be run at ambient pH with very small amount of samples in 384-well plates. The sensor is able to detect nanoMolar concentration of Gd(III), and is relatively unresponsive toward a range of biologically relevant ions and the chelated Gd(III). Although some cross-reactivity with other trivalent lanthanide ions, such as Europium(III) and Terbium(III) is observed, these are not commonly found in biological systems and contrast agents. This convenient and rapid method may be useful in ascertaining a high purity of GBCA solutions.
Abstract:The aims of this study were to determine the proximate composition of cacao pod husk as well as the optimal conditions for extraction and purification of theobromine from cacao pod husk. The results indicated that cacao pod husk had high contents of moisture and carbohydrate (87.06% and 11.03% by fresh weight, respectively), but low contents of crude protein, crude lipid, and ash (0.31%, 0.12%, and 1.48% by fresh weight, respectively). The optimal conditions for extraction of theobromine from cacao pod husk were of 70% ethanol, with an extraction time of 90 min, and 1 as the number of extractions. A concentration of 10% by volume of 10% lead acetate solution was the best selection for purification of the crude extracts containing theobromine from cacao pod husk. Under these optimal conditions, theobromine content obtained from cacao pod husk was 6.79 mg/100 g dry weight.The finding from this study is a valuable contribution for obtaining theobromine from an abundant, inexpensive, renewable, and sustainable source for potential application in the nutraceutical, medical, and pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.