Progression of GPI-anchored proteins in bloodstream African trypanosomes correlates with GPI-valence: homodimeric VSG (2 GPI) is a surface protein; heterodimeric transferrin receptor (1 GPI) localizes in the flagellar pocket; homodimeric GPI-minus VSG (0 GPI) is rapidly degraded in the lysosome. We test this relationship using three native secretory/endocytic proteins as monomeric GPI-plus and -minus reporters. GPI-minus procyclin trafficks to the lysosome and is degraded. GPI-plus procyclin trafficks to the flagellar pocket/cell surface and is released (∼50%) with an intact anchor, the remainder (∼50%) is degraded in the lysosome. GPI-plus BiPNHP, derived from the ER marker BiP, is released quantitatively (>80%), while GPI-plus p67HP, derived from the lysosomal marker p67, turns over by both release (∼15%) and lysosomal degradation (>50%). Turnover of endogenous transferrin receptor occurs primarily by lysosomal degradation (>90%). Thus shedding of monovalent GPI reporters correlates inversely with lysosomal targeting. We propose that mono-GPI reporters cycle through the flagellar pocket and endosome until they are disposed of by either shedding or lysosomal targeting. Partitioning between these fates may be a function of individual physical properties. Release is likely due to the exclusive use of C-14:0 myristate in the bloodstream stage GPI anchor. Up-regulation of transferrin receptor by culture in dog serum resulted in prominent cell surface localization, but not in elevated release. Surface receptor was non-functional for ligand binding suggesting that it may be bivalent homodimers of the GPI-anchored ESAG6 receptor subunit.
African trypanosomes are the causative agents of human trypanosomiasis (sleeping sickness). The pathogenic stage of the parasite has unique adaptations to life in the bloodstream of the mammalian host, including upregulation of endocytic and lysosomal activities. We investigated stage-specific requirements for cytoplasmic adaptor/clathrin machinery in post-Golgi apparatus biosynthetic sorting to the lysosome using RNA interference silencing of the Tb1 subunit of adaptor complex 1 (AP-1), in conjunction with immunolocalization, kinetic analyses of reporter transport, and quantitative endocytosis assays. Tb1 silencing was lethal in both stages, indicating a critical function(s) for the AP-1 machinery. Transport of soluble and membrane-bound secretory cargoes was Tb1 independent in both stages. In procyclic parasites, trafficking of the lysosomal membrane protein, p67, was disrupted, leading to cell surface mislocalization. The lysosomal protease trypanopain was also secreted, suggesting a transmembrane-sorting receptor for this soluble hydrolase. In bloodstream trypanosomes, both p67 and trypanopain trafficking were unaffected by Tb1 silencing, suggesting that AP-1 is not necessary for biosynthetic lysosomal trafficking. Endocytosis in bloodstream cells was also unaffected, indicating that AP-1 does not function at the flagellar pocket. These results indicate that post-Golgi apparatus sorting to the lysosome is critically dependent on the AP-1/clathrin machinery in procyclic trypanosomes but that this machinery is not necessary in bloodstream parasites. We propose a simple model for stage-specific default secretory trafficking in trypanosomes that is consistent with the behavior of other soluble and glycosylphosphatidylinositol-anchored cargos and which is influenced by upregulation of endocytosis in bloodstream parasites as an adaptation to life in the mammalian bloodstream.
p67 is a lysosome-associated membrane protein-like lysosomal type I transmembrane glycoprotein in African trypanosomes. The p67 cytoplasmic domain (CD) is both necessary and sufficient for lysosomal targeting in procyclic insect-stage parasites. The p67CD contains two [DE]XXXL[LI]-type dileucine motifs, which function as lysosomal targeting signals in mammalian cells. Using a green fluorescent protein fusion to the p67 transmembrane and cytoplasmic domains as a reporter system, we investigated the role of these motifs in lysosomal targeting in procyclic trypanosomes. Pulse-chase turnover studies, steady-state immunolocalization and quantitative flow cytometry all gave consistent results. Mutagenesis of the membrane-distal dileucine motif impairs lysosomal trafficking leading to partial appearance of the reporter on the cell surface. Mutagenesis of the membrane-proximal motif has little effect on proper targeting. Simultaneous mutagenesis of both motifs results in quantitative delivery to the cell surface. Thus, the distal motif plays a dominant role, but both dileucine motifs are necessary for maximal lysosomal targeting. Additional studies suggest that the upstream acidic residues in each motif influence lysosomal targeting and may also affect forward trafficking in the early secretory pathway. These results strongly suggest an evolutionary conservation in lysosomal trafficking mechanisms in the ancient eukaryote Trypanosoma brucei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.