Energy-saving solutions in buildings in Vietnam are a great concern for sustainable development nowadays. However, energy-efficient and cost-saving designs based on the integration of Building Information Modeling (BIM) and building energy analysis are still limited. This study aims to provide energy-efficient and cost-saving designs for buildings by performing the cloud-based building energy simulation. Particularly, the analysis of the impact of changing building parameters on energy consumption and energy cost was performed in this study. Considered building parameters includes building orientation, wall construction, window-to-wall ratio (WWR), lighting efficiency, daylighting and occupancy controls, and, heating ventilation, and air conditioning system. The findings of the study can facilitate building designers, building owners or investors can obtain the best solution for designing the buildings. The first contribution of the study, to provide an in-depth analysis of the impact of the building parameters of energy cost and energy consumption. The second contribution is to contribute to the domain knowledge promotion of the digital transformation in the construction industry.
With the purpose of obtaining the shear strength parameters (friction angle, φ, and cohesion, c) of asphalt concretes. At the present time, almost the testing devices were designed based on the condition of the vehicle's load when they are moving on the pavement structure. That means, the fatigue resistance of the interfaces was determined through the loads acting at the interfaces between layers are repetitive mechanical action of the moving vehicles. With that view, the ratio of the normal and shear fatigue loads of asphalt concrete was not considered in terms of the nature of the material. An asphalt concrete testing device is proposed based on the modification from AST-2 instrument and Shear Fatigue Test instrument. The main parameters of this device are calculated from the ratio of shear stress and normal stress at the fatigue of the asphalt concrete according to the Mohr-Coulomb failure criterion. Test results with asphalt specimens show that the device is stable, the acting vertical loads were smaller and more stable. Keywords: normal strength; shear stress; asphalt concrete; fatigue stresses. Received 4 December 2018, Revised 20 December 2018, Accepted 24 January 2019
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.