The flexible alternating current transmission systems (FACTS) have been widely used in modern power systems. Because of the presence of the FACTS devices, distance relays in transmission lines may inaccurately locate fault locations. Therefore, it is significant to find a mechanism for locating fault in transmission lines connected to FACTS in which a static var compensator (SVC) is investigated in this work. Based on the development of a phasor measurement unit (PMU) with global positioning system (GPS), this paper proposes a new method for calculating apparent impedance seen by the distance relay location while a short-circuit fault occurs in a transmission line connected the SVC to the midpoint of the line. According to the method, sampled voltage and current measurement at the relay and SVC locations are synchronized using PMUs and the synchronized measurements are then used to calculate a new apparent impedance and to locate the fault location in the line. The method in this paper has the capability for fast calculation and it also has the robustness for identifying different fault types in power systems. Matlab/Simulink software is applied to simulate the study results and to evaluate the correctness of the modeling and effectiveness of the proposed method for locating fault in this paper.
Electric transmission lines play a very essential role in transmitting power energy from generation centers to consumption regions. They can be exposed to fault occurrences due to various reasons, such as lightning strikes, malfunction of components, and human errors. Since fault is unpredictable, a fast fault location method is required to minimize the impact of fault in power systems. This paper presents a research work for comparing the performance of the impedance-based fault location methods, in which the impedance parameter of the faulted line section is calculated as a measure of the distance to the fault. To evaluate the capability of the methods for correctly detecting and locating the fault locations, comprehensive simulation results are carried out. This computation is based on modeling and simulating a three-phase 220kV overhead transmission line in the Matlab/Simulink software. Short circuits which occur in various fault resistances and locations along the transmission line are emulated to investigate several case studies and the accuracy of fault location determination is calculated to compare the performance among these fault location methods.
The detection, mitigation, and classification of power quality (PQ) disturbances have been issues of interest in the power system field. This paper proposes an approach to detect and classify various types of PQ disturbances based on the Stockwell transform (ST) and decision tree (DT) methods. At first, the ST is developed based on the moving, localizing, and scalable Gaussian window to detect five statistical features of PQ disturbances such as the high frequency of oscillatory transient, distinction between stationary and non-stationary, the voltage amplitude oscillation around an average value, the existence of harmonics in a disturbance signal, and the root mean square voltage at the internal period of sag, swell or interruption. Then, these features are classified into nine types, such as normal, sag, swell, interruption, harmonic, flicker, oscillatory transient, harmonic voltage sag, and harmonic voltage swell by using the DT algorithm that is based on a set of rules with the structure “if…then’’. This proposed study is simulated using MATLAB simulation. The IEEE 13-bus system, the recorded real data based on PQube, and the experiment based on the laboratory environment are applied to verify the effectiveness.
With the penetration of distributed generation (DG) units, the power systems will face insecurity problems and voltage stability issues. This paper proposes an innovatory method by modifying the conventional continuation power flow (CCPF) method. The proposed method is realized on two prediction and correction steps to find successive load flow solutions according to a specific load scenario. Firstly, the tangent predictor is proposed to estimate the next predicted solution from two previous corrected solutions. And then, the corrector step is proposed to determine the next corrected solution on the exact solution. This corrected solution is constrained to lie in the hyperplane running through the predicted solution orthogonal to the line from the two previous corrected solutions. Besides, once the convergence criterion is reached, the procedure for cutting the step length control down to a smaller one is proposed to be implemented. The effectiveness of the proposed method is verified via numerical simulations on three standard test systems, namely, IEEE 14-bus, 57-bus, and 118-bus, and compared to the CCPF method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.