We report on a comprehensive study of electrical and optical properties of efficient near-infrared p⁺-i-n⁺ photodetectors based on large ensembles of self-assembled, vertically aligned i-n⁺ InP nanowires monolithically grown on a common p⁺ InP substrate without any buffer layer. The nanowires have a polytype modulated crystal structure of wurtzite and zinc blende. The electrical data display excellent rectifying behavior with an ideality factor of about 2.5 at 300 K. The ideality factor scales with 1/T, which possibly reflects deviations from classical transport models due to the mixed crystal phase of the nanowires. The observed dark leakage current is of the order of merely ∼100 fA/nanowire at 1 V reverse bias. The detectors display a linear increase of the photocurrent with reverse bias up to about 10 pA/nanowire at 5 V. From spectrally resolved measurements, we conclude that the photocurrent is primarily generated by funneling photogenerated carriers from the substrate into the NWs. Contributions from direct excitation of the NWs become increasingly important at low temperatures. The photocurrent decreases with temperature with an activation energy of about 50 meV, which we discuss in terms of a temperature-dependent diffusion length in the substrate and perturbed transport through the mixed-phase nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.