Background: Venoms from rare snake species may contain toxins of new structural or/and pharmacological types.Results: Amino acid sequence of the new polypeptide azemiopsin isolated from Azemiops feae viper venom was established, and its biological activity was determined.Conclusion: Azemiopsin is the first natural toxin that blocks nicotinic acetylcholine receptors and does not contain disulfide bridges.Significance: Azemiopsin is the first member of a new toxin group.
Cells respond to mechanical stimuli with altered signaling networks. Here, we show that mechanical forces rapidly induce phosphorylation of CD97/ADGRE5 (pCD97) at its intracellular C-terminal PDZ-binding motif (PBM). Biochemically, this phosphorylation disrupts CD97 binding to PDZ domains of the scaffold protein DLG1. In shear-stressed cells, pCD97 appears not only in junctions, retracting fibers, and the attachment area but also in lost membrane patches, demonstrating (intra)cellular detachment at the CD97 PBM. This motif is critical for the CD97-dependent mechanoresponse. Cells expressing CD97 without the PBM are more deformable, and under shear stress, these cells lose cell contacts faster and show changes in the actin cytoskeleton when compared with cells expressing full-length CD97. Our data indicate CD97 linkage to the cytoskeleton. Consistently, CD97 knockout phenocopies CD97 without the PBM, and membranous CD97 is organized in an F-actin-dependent manner. In summary, CD97 shapes the cellular mechanoresponse through signaling modulation via its PBM.
Selenium-binding protein 1 (SELENBP1) has recently been reported to catalyse the oxidation of methanethiol, an organosulfur compound produced by gut microbiota. Two of the reaction products of methanethiol oxidation, hydrogen peroxide and hydrogen sulphide, serve as signalling molecules for cell differentiation. Indeed, colonocyte differentiation has been found to be associated with SELENBP1 induction. Here, we show that SELENBP1 is induced when 3T3-L1 preadipocytes undergo terminal differentiation and maturation to adipocytes. SELENBP1 induction succeeded the up-regulation of known marker proteins of white adipocytes and the intracellular accumulation of lipids. Immunofluorescence microscopy revealed predominant cytoplasmic localisation of SELENBP1 in 3T3-L1 adipocytes, as demonstrated by co-staining with the key lipogenic enzyme, acetyl-CoA-carboxylase (ACC), located in cytosol. In differentiating 3T3-L1 cells, the mTOR inhibitor rapamycin and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α) likewise suppressed SELENBP1 induction, adipocyte differentiation and lipid accumulation. However, lipid accumulation per se is not linked to SELENBP1 induction, as hepatic SELENBP1 was down-regulated in high fructose-fed mice despite increased lipogenesis in the liver and development of non-alcoholic fatty liver disease (NAFLD). In conclusion, SELENBP1 is a marker of cell differentiation/maturation rather than being linked to lipogenesis/lipid accumulation.
Diagnosis in an advanced state is a major hallmark of ovarian cancer and recurrence after first line treatment is common. With upcoming novel therapies, tumor markers that support patient stratification are urgently needed to prevent ineffective therapy. Therefore, the transcription factor FOXM1 is a promising target in ovarian cancer as it is frequently overexpressed and associated with poor prognosis. In this study, fresh tissue specimens of 10 ovarian cancers were collected to investigate tissue cultures in their ability to predict individual treatment susceptibility and to identify the benefit of FOXM1 inhibition. FOXM1 inhibition was induced by thiostrepton (3 µM). Carboplatin (0.2, 2 and 20 µM) and olaparib (10 µM) were applied and tumor susceptibility was analyzed by tumor cell proliferation and apoptosis in immunofluorescence microscopy. Resistance mechanisms were investigated by determining the gene expression of FOXM1 and its targets BRCA1/2 and RAD51. Ovarian cancer tissue was successfully maintained for up to 14 days ex vivo, preserving morphological characteristics of the native specimen. Thiostrepton downregulated FOXM1 expression in tissue culture. Individual responses were observed after combined treatment with carboplatin or olaparib. Thus, we successfully implemented a complex tissue culture model to ovarian cancer and showed potential benefit of combined FOXM1 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.