Kinetics and mechanisms of As(III) oxidation by free available chlorine (FAC-the sum of HOCl and OCl-), ozone (O3), and monochloramine (NH2Cl) were investigated in buffered reagent solutions. Each reaction was found to be first order in oxidant and in As(III), with 1:1 stoichiometry. FAC-As(III) and O3-As(III) reactions were extremely fast, with pH-dependent, apparent second-order rate constants, k''app, of 2.6 (+/- 0.1) x 10(5) M(-1) s(-1) and 1.5 (+/- 0.1) x 10(6) M(-1) s(-1) at pH 7, whereas the NH2Cl-As(III) reaction was relatively slow (k''app = 4.3 (+/- 1.7) x 10(-1) M(-1) s(-1) at pH 7). Experiments conducted in real water samples spiked with 50 microg/L As(III) (6.7 x 10(-7) M) showed that a 0.1 mg/L Cl2 (1.4 x 10-6 M) dose as FAC was sufficient to achieve depletion of As(III) to <1 microg/L As(III) within 10 s of oxidant addition to waters containing negligible NH3 concentrations and DOC concentrations <2 mg-C/L. Even in a water containing 1 mg-N/L (7.1 x 10(-5) M) as NH3, >75% As(III) oxidation could be achieved within 10 s of dosing 1-2 mg/L Cl2 (1.4-2.8 x 10(-5) M) as FAC. As(III) residuals remaining in NH3-containing waters 10 s after dosing FAC were slowly oxidized (t1/2 > or = 4 h) in the presence of NH2Cl formed by the FAC-NH3 reaction. Ozonation was sufficient to yield >99% depletion of 50 microg/L As(III) within 10 s of dosing 0.25 mg/L O3 (5.2 x 10(-6) M) to real waters containing <2 mg-C/L of DOC, while 0.8 mg/L O3 (1.7 x 10(-5) M) was sufficientfor a water containing 5.4 mg-C/L of DOC. NH3 had negligible effect on the efficiency of As(III) oxidation by O3, due to the slow kinetics of the O3-NH3 reaction at circumneutral pH. Time-resolved measurements of As(III) loss during chlorination and ozonation of real waters were accurately modeled using the rate constants determined in this investigation.
The rate coefficient (k1) of the reaction between hydroxyl radical and hydroxyacetone, which remained so far controversial, was determined over the temperature range 290-500 K using pulsed-laser photolysis coupled to pulsed-laser induced fluorescence (PLP-PLIF). Hydroxyl radical was generated by pulsed photolysis of H2O2 at 248 nm. The results show that at a pressure of 50 Torr He, the rate coefficient obeys a negative temperature dependence k1(T) = (1.77 ± 0.19) × 10(-12) exp((353 ± 36)/T) cm(3) molecule(-1) s(-1) for temperatures between 290 and 380 K, in good agreement with the results of Dillon et al. (Phys. Chem. Chem. Phys. 2006, 8, 236) at 60 Torr He. However, always at 50 Torr He but for the higher temperature range 410-500 K, a positive temperature dependence was found: k1(T) = (1.14 ± 0.25) × 10(-11) exp(-(378 ± 102)/T) cm(3) molecule(-1) s(-1), close to the expression obtained by Baasandorj et al. (J. Phys. Chem. A 2009, 113, 10495) for pressures of 2 and 5 Torr He but at lower temperatures, 280-360 K, where their k1(T) values are well below these of Dillon et al. and of this work. Moreover, the rate coefficient k1(301 K) determined as a function of pressure, from 10 to 70 Torr He, shows a pronounced decrease once the pressure is below ∼40 Torr He, thus explaining the disparity between the higher-pressure data of Dillon et al. and the lower-pressure results of Baasandorj et al. The pressure dependence of k1 and of its temperature-dependence below ∼400 K is rationalized by the reaction proceeding via a hydrogen-bonded prereactive complex (PRC) and a submerged transition state, such that at high pressures collisionally thermalized PRCs contribute additional reactive flux over and through the submerged barrier. The high-pressure rate coefficient data both of Dillon et al. and of this work over the combined range 230-500 K can be represented by the theory-based expression k1(T) = 5.3 × 10(-20) × T(2.6) exp(1100/T) cm(3) molecule(-1) s(-1).
The effectiveness of peroxymonocarbonate ( HCO 4 − ) on the degradation of Reactive Blue 19 (RB19) textile dye was investigated in this study. The formation kinetics of HCO 4 − produced in situ in a H 2 O 2 − HCO 3 − system was studied to control the experimental conditions for the investigation of RB19 degradation at mild conditions. The effects of metallic ion catalysts, the pH, the input HCO 3 − and Co2+ concentrations, and UV irradiation were studied. The obtained result showed that Co2+ ion gave the highest efficiency on accelerating the rate of RB19 degradation by the H2O2– HCO 3 − system. In the pH range of 7–10, the higher pH values resulted in faster dye degradation. The reaction orders of the RB19 degradation with respect to Co2+ and HCO3– were determined to be 1.2 and 1.7, respectively. The UV irradiation remarkably enhanced the radical formation in the oxidation system, which led to high degradation efficiencies. The COD, TOC removal, and HPLC results clearly revealed complete mineralization of RB19 by the H 2 O 2 − HCO 3 − − Co 2 + system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.