Beam-column joints in existing concrete buildings might not satisfy the design requirements for seismic reinforcement details specified in current seismic design codes. Thus, in this study, various retrofit solutions for existing exterior beam-column joints with non-seismic details were developed: head re-bars anchoring, carbon fiber reinforced polymer (CFRP) wrapping, haunch retrofit element, and steel jacketing with various shapes and sizes. To investigate the seismic performance of exterior joints strengthened with the proposed retrofit solutions, seven half-scale exterior reinforced concrete beam-column joints including one control specimen and six retrofitted specimens were fabricated and tested under cyclic loading simulating earthquake loading. The test results showed that the proposed retrofit solutions could partially enhance the seismic capacity of the beam-column joints: steel jackets could increase deformation and load-carrying capacities; steel haunch elements could increase the load-carrying capacity, stiffness, and dissipated energy; and head re-bar anchoring and CFRP wrapping did not significantly effect on the seismic capacity of the beam-column joints.
The aim of this paper is to investigate the compressive behavior and characteristics of amorphous metallic fiberreinforced concrete (AMFRC). Compressive tests were carried out for two primary parameters: fiber volume fractions (V f ) of 0, 0.3, 0.6 and 0.8 %; and design compressive strengths of 27, 35, and 50 MPa at the age of 28 days. Test results indicated that the addition of amorphous metallic fibers in concrete mixture enhances the toughness, strain corresponding to peak stress, and Poisson's ratio at high stress level, while the compressive strength at the 28-th day is less affected and the modulus of elasticity is reduced. Based on the experimental results, prediction equations were proposed for the modulus of elasticity and strain at peak stress as functions of fiber volume fraction and concrete compressive strength. In addition, an analytical model representing the entire stress-strain relationship of AMFRC in compression was proposed and validated with test results for each concrete mix. The comparison showed that the proposed modeling approach can properly simulate the entire stress-strain relationship of AMFRC as well as the primary mechanical properties in compression including the modulus of elasticity and strain at peak stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.