Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.
Anxiety is integrated in the amygdaloid nuclei and involves the interplay of the amygdala and various other areas of the brain. Neuropeptides play a critical role in regulating this process. Neuropeptide Y (NPY), a 36 aa peptide, is highly expressed in the amygdala. It exerts potent anxiolytic effects through cognate postsynaptic Y1 receptors, but augments anxiety through presynaptic Y2 receptors. To identify the precise anatomical site(s) of Y2-mediated anxiogenic action, we investigated the effect of site-specific deletion of the Y2 gene in amygdaloid nuclei on anxiety and depression-related behaviors in mice. Ablating the Y2 gene in the basolateral and central amygdala resulted in an anxiolytic phenotype, whereas deletion in the medial amygdala or in the bed nucleus of the stria terminalis had no obvious effect on emotion-related behavior. Deleting the Y2 receptor gene in the central amygdala, but not in any other amygdaloid nucleus, resulted in an added antidepressant-like effect. It was associated with a reduction of presumably presynaptic Y2 receptors in the stria terminalis/bed nucleus of the stria terminalis, the nucleus accumbens, and the locus ceruleus. Our results are evidence of the highly site-specific nature of the Y2-mediated function of NPY in the modulation of anxiety-and depression-related behavior. The activity of NPY is likely mediated by the presynaptic inhibition of GABA and/or NPY release from interneurons and/or efferent projection neurons of the basolateral and central amygdala.
Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.
Chronic subordinate colony (CSC) housing has been recently validated as a murine model of chronic psychosocial stress which induces alterations of stress-related parameters including decreased body-weight gain and an increased level of anxiety in comparison with single housed control (SHC) mice. By using immunohistochemical immediate early gene (IEG) mapping we investigated whether CSC housing causes alterations in neuronal activation patterns in limbic areas including the amygdala, hippocampus, septum and the periaqueductal gray (PAG) and hypothalamic paraventricular nucleus (PVN). While CSC housing increased basal Zif-268 expression in the nucleus accumbens shell compared to SHC, IEG responses to subsequent open arm (OA) exposure were attenuated in the ventral and intermediate sub-regions of the lateral septum, parvocellular PVN and the dorsal CA3 region of the hippocampus of CSC compared with SHC mice. In contrast, a potentiated c-Fos response in CSC mice was observed in the dorsomedial PAG after OA exposure. Confirming previous findings obtained on the elevated plus-maze, an enhanced anxiety-related behavior in CSC compared with SHC mice was also observed during OA exposure. In order to investigate the appropriate control conditions for CSC housing, group housed control (GHC) mice were additionally included in the behavioral testing. Interestingly, GHC as well as CSC mice showed significantly less risk assessment/exploratory behavior during OA exposure compared with SHC mice indicating that group housing itself is stressful for mice and not an adequate control for the CSC paradigm. Overall, CSC housing is an ethologically relevant chronic psychosocial stressor which results in an elevated sensitivity to a subsequent novel, aversive challenge. However, the CSC-induced increase in anxiety-related behavior was accompanied by differences in neuronal activation, compared with SHC, in defined sub-regions of brain areas known to be involved in the processing of emotionality and stress responses.
BackgroundThis study was carried out to investigate the effect of the steaming process on chemical constituents, free radical scavenging activity, and antiproliferative effect of Vietnamese ginseng.MethodsSamples of powdered Vietnamese ginseng were steamed at 120°C for various times and their extracts were subjected to chemical and biological studies.ResultsUpon steaming, contents of polar ginsenosides, such as Rb1, Rc, Rd, Re, and Rg1, were rapidly decreased, whereas less polar ginsenosides such as Rg3, Rg5, Rk1, Rk3, and Rh4 were increased as reported previously. However, ocotillol type saponins, which have no glycosyl moiety at the C-20 position, were relatively stable on steaming. The radical scavenging activity was increased continuously up to 20 h of steaming. Similarly, the antiproliferative activity against A549 lung cancer cells was also increased.ConclusionIt seems that the antiproliferative activity is closely related to the contents of ginsenoside Rg3, Rg5, and Rk1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.