Identity proton-transfer reactions between 21 acids, Y-X-H, and their conjugate bases, (-)X-Y, were studied according to the reaction scheme, Y-X-H + (-)X-Y --> (Y-X-H...(-)X-Y)(cx) --> [Y-X...H...X-Y](ts) --> (Y-X..H-X-Y)(cx) --> Y-X(-) + H-X-Y, where cx indicates an ion-molecule complex and ts indicates the proton-transfer transition state. All species were optimized at the MP2/6-311+G level, and these geometries were used for single-point calculations by other methods: coupled-cluster, DFT (gas phase), and a polarizable continuum aqueous solvent model (COSMO). All methods gave enthalpies of deprotonation which correlate well with experimental measurements of deltaH(ACID) (gas) or pK(a) (aq). Calculated gas-phase enthalpies of deprotonation (deltaH(ACID)) and enthalpies of activation (deltaH(#)) are poorly correlated except for small, carefully selected sets. This result stands in contrast to the many aqueous phase Brönsted correlations of kinetic and equilibrium acid strength. On the other hand, gas-phase enthalpies of complexation and deltaH(#) are well correlated, indicating that factors which stabilize the transition state are at work in the bimolecular ion-molecule complex although to a smaller degree. We infer that intermoiety electrostatic and other interactions, similar within the complex and the transition state, but absent in the separated reactants (products), cause the lack of correlation between deltaH(ACID) and the other two quantities. Such differences are strongly attenuated in water because reactants and products do interact with polar/polarizable matter (the solvent) if not with each other. Charge distributions (NPA) were computed, allowing calculation of Bernasconi's "transition state imbalance parameter". Such measures provide intuitively satisfactory trends, but only if the reaction termini, X, are kept the same. As X is made more electronegative, the magnitude of the apparent imbalance increases, a result of greater negative charge on X in the transition state. This result gives additional support for the importance of the ion-triplet structure, [YX(-)...H(+)...(-)XY], to the stability of the transition state. Additional qualitative support for this conclusion is provided by the inverse relationship between the activation barrier and the charge on the in-flight hydrogen in the transition state, and by the dominance of polar over resonance substituent effects on the stability of the transition state. Calculations also show that the "nitroalkane anomaly", well established in solution, does not exist in the gas phase. The COSMO model partly reproduces this anomaly and performs adequately except when strong, specific intermolecular forces such as hydrogen bonding between solvent and anions are important.
To develop an atomistic understanding of the binding of NO with iron phthalocyanine (FePc), the interaction between NO (an electron withdrawing gas) and NH3 (an electron donating gas) with an isolated FePc molecule (monomer) was compared with density functional theory. The simulations show that NO strongly chemisorbs to the Fe metal and physisorbs to all the nonmetal sites. Additionally, when NO physisorbs to the inner ring nitrogens, NO subsequently undergoes a barrierless migration to the deep chemisorption well on the Fe metal. Conversely, NH3 only weakly chemisorbs to the Fe metal and does not bind to any other sites. Projected density of states simulations and analysis of the atomic charges show that the binding of NO to the FePc metal results in a charge transfer from the Fe metal to the NO chemisorbate; the opposite effect is observed for the binding of NH3 to the Fe metal. Simulations of NO binding to the Fe metal of a monolayer FePc film and FePc trimer were also performed to show that intermolecular FePc-FePc interactions have a negligible effect on the FePc electronic structure and NO binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.