BACKGROUND AND OBJECTIVES: There are no US Food and Drug Administration-approved therapies for neonatal seizures. Phenobarbital and phenytoin frequently fail to control seizures. There are concerns about the safety of seizure medications in the developing brain. Levetiracetam has proven efficacy and an excellent safety profile in older patients; therefore, there is great interest in its use in neonates. However, randomized studies have not been performed. Our objectives were to study the efficacy and safety of levetiracetam compared with phenobarbital as a first-line treatment of neonatal seizures. METHODS:The study was a multicenter, randomized, blinded, controlled, phase IIb trial investigating the efficacy and safety of levetiracetam compared with phenobarbital as a firstline treatment for neonatal seizures of any cause. The primary outcome measure was complete seizure freedom for 24 hours, assessed by independent review of the EEGs by 2 neurophysiologists.RESULTS: Eighty percent of patients (24 of 30) randomly assigned to phenobarbital remained seizure free for 24 hours, compared with 28% of patients (15 of 53) randomly assigned to levetiracetam (P , .001; relative risk 0.35 [95% confidence interval: 0.22-0.56]; modified intention-to-treat population). A 7.5% improvement in efficacy was achieved with a dose escalation of levetiracetam from 40 to 60 mg/kg. More adverse effects were seen in subjects randomly assigned to phenobarbital (not statistically significant). CONCLUSIONS:In this phase IIb study, phenobarbital was more effective than levetiracetam for the treatment of neonatal seizures. Higher rates of adverse effects were seen with phenobarbital treatment. Higher-dose studies of levetiracetam are warranted, and definitive studies with long-term outcome measures are needed.WHAT'S KNOWN ON THIS SUBJECT: In 1999, a randomized controlled trial comparing phenobarbital and phenytoin in neonates revealed that each drug had 45% efficacy. These treatments remain the standard of care for neonatal seizures. Levetiracetam has a better safety profile; however, its efficacy is unproven in neonates.WHAT THIS STUDY ADDS: In this study conducted in the hypothermia era and with near real-time response to continuous video EEG monitoring, phenobarbital was more effective than levetiracetam in achieving seizure cessation. Dose-finding studies and phase III trials with long-term outcomes are needed.
We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n = 15, normal cognition, treatable seizures), 2) intermediate epilepsy (n = 33, mild ID, partially pharmaco-responsive), 3) developmental and epileptic encephalopathy (DEE, n = 177, severe ID, majority pharmaco-resistant), 4) generalized epilepsy (n = 20, mild to moderate ID, frequently with absence seizures), 5) unclassifiable epilepsy (n = 127), and 6) neurodevelopmental disorder without epilepsy (n = 20, mild to moderate ID). Groups 1–3 presented with focal or multifocal seizures (median age of onset: four months) and focal epileptiform discharges, whereas the onset of seizures in group 4 was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human NaV1.6 channels and whole-cell patch-clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested GOF variant had either focal (97, groups 1–3), or unclassifiable epilepsy (39), whereas 34 with a LOF variant had either generalized (14), no (11) or unclassifiable (6) epilepsy; only three had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1–3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6. Five different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n=17, normal cognition, treatable seizures), 2) intermediate epilepsy (n=36, mild ID, partially pharmacoresponsive), 3) developmental and epileptic encephalopathy (DEE, n=191, severe ID, majority pharmacoresistant), 4) generalized epilepsy (n=21, mild to moderate ID, frequently with absence seizures), and 5) affected individuals without epilepsy (n=25, mild to moderate ID). Groups 1-3 presented with early-onset (median: four months) focal or multifocal seizures and epileptic discharges, whereas the onset of seizures in group 4 was later (median: 39 months) with generalized epileptic discharges. The epilepsy was not classifiable in 143 individuals. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin insensitive human NaV1.6 channels and whole-cell patch clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 165 individuals. All 133 individuals carrying GOF variants had either focal (76, groups 1-3), or unclassifiable epilepsy (37), whereas 32 with LOF variants had either generalized (14), no (11) or unclassifiable (5) epilepsy; only two had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a therapeutic treatment option in early onset SCN8A-related focal epilepsy.
Neuronal ceroid lipofuscinosis is a severe neurodegenerative lysosomal storage disorder. Gamma-aminobutyric acid and glutamate deficiency have been reported with CLN1, CLN3, and CLN6. Isolated biopterin/neopterin without dopamine deficiency has been reported in 1 patient with a CLN2 mutation. This report describes a patient with a CLN2 mutation with symptomatic biopterin and dopamine deficiency. A 4-year-old boy presented with intractable epilepsy and developmental regression starting 1 year previously. His exam showed retinopathy, scanning speech, dysmetria, and ataxic fenestrating gait with stooped posture. Electroencephalogram showed generalized spikes with occipital spikes on slow photic stimulation. Brain magnetic resonance images 1 year apart showed significant diffuse atrophy. CLN2 gene sequencing showed pathogenic compound heterozygous mutations. Cerebrospinal fluid neurotransmitters showed low homovanillic acid and tetrahydrobiopterin. Levodopa-carbidopa resulted in dramatic improvement of gait. Dopamine/biopterin deficiency is a possible secondary manifestation of CLN2 mutations. Levodopa and dopamine agonists might be useful in treating these secondary abnormalities and improving quality of life in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.