Clathrate hydrates are a demanding field of research because of their fundamental impact on human life and the environment. Interfacial forces involving hydrates are vital factors in numerous natural and industrial processes, but the topic has been relatively neglected in the scientific literature. By using atomic force microscopy, we are now able to measure for the first time the forces between a semi-clathrate hydrate formed by tetrabutyl ammonium bromide and a silica microsphere in air and in undecane. Significantly, the analyses of jump-in (attractive) and pull-off (adhesive) forces in force–distance curves indicate the presence of a quasi-liquid layer (QLL) on the hydrate surface resulting from interfacial premelting. We have shown that interfacial forces between the sphere and the hydrate surface are dominated by the capillary formation between the QLL and the sphere. van der Waals forces are still active in the region several nm above the QLL, prior to the sphere touching the QLL. Our study introduces a new quantitative parameter to the hydrate literature, that is, the thickness of the QLL on the hydrate surface. This parameter, being around 11 nm at −4 °C, is crucial to the modeling of hydrate interactions and agglomerations.
The adhesive force of clathrates to surfaces is a century-old problem of pipeline blockage for the energy industry. Here, we provide new physical insight into the origin of this force by accounting for the existence of a quasi-liquid layer (QLL) on clathrate surfaces. To gain this insight, we measure the adhesive force between a tetrahydrofuran clathrate and a solid sphere. We detect a strong adhesion, which originates from a capillary bridge that is formed from a nanometer-thick QLL on the clathrate surface. The curvature of this capillary bridge is nanoscaled, causes a large negative Laplace pressure, and leads to a strong capillary attraction. The microscopic capillary bridge expands and consolidates over time. This dynamic behavior explains the time-dependent increase of measured capillary forces. The adhesive force decreases greatly upon increasing the roughness and the hydrophobicity of the sphere, which founds the fundamental basics for reducing clathrate adhesion by using surface coating.
Resolving the long-standing problem of hydrate plugging in oil and gas pipelines has driven an intense quest for mechanisms behind the plug formation. However, existing theories of hydrate agglomeration have critical shortcomings, for example, they cannot describe nanometer-range capillary forces at hydrate surfaces that were recently observed by experiments. Here, we present a new model for hydrate agglomeration which includes premelting of hydrate surfaces. We treat the premelting layer on hydrate surfaces such as a thin liquid film on a substrate and propose a soft-sphere model of hydrate interactions. The new model describes the premelting-induced capillary force between a hydrate surface and a pipe wall or another hydrate. The calculated adhesive force between a hydrate sphere (R = 300 μm) and a solid surface varies from 0.3 mN on a hydrophilic surface (contact angle, θ = 0°) to 0.008 mN on a superhydrophobic surface (θ = 160°). The initial contact area is 4 orders of magnitude smaller than the cross-sectional area of the hydrate sphere and can expand with increasing contact time because of the consolidation of hydrate particles on the solid surface. Our model agrees with the available experimental results and can serve as a conceptual guidance for developing a chemical-free environmentally friendly method for prevention of hydrate plugs via surface coating of pipe surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.