Lung squamous cell carcinomas (LSCC) pathogenesis remains incompletely understood and biomarkers predicting treatment response remain lacking. Here we describe novel murine LSCC models driven by loss of Trp53 and Keap1, both of which are frequently mutated in human LSCCs. Homozygous inactivation of Keap1 or Trp53 promoted airway basal stem cell (ABSC) self-renewal, suggesting that mutations in these genes lead to expansion of mutant stem cell clones. Deletion of Trp53 and Keap1 in ABSCs, but not more differentiated tracheal cells, produced tumors recapitulating histological and molecular features of human LSCCs, indicating that they represent the likely cell of origin in this model. Deletion of Keap1 promoted tumor aggressiveness, metastasis, and resistance to oxidative stress and radiotherapy (RT). KEAP1/NRF2 mutation status predicted risk of local recurrence after RT in non-small lung cancer (NSCLC) patients and could be non-invasively identified in circulating tumor DNA. Thus, KEAP1/NRF2 mutations could serve as predictive biomarkers for personalization of therapeutic strategies for NSCLCs.
Soft-tissue sarcomas are rare malignant tumors arising from connective tissues and have an overall incidence of about five per 100,000 per year. While this diverse family of malignancies comprises over 100 histological subtypes and many molecular aberrations are prevalent within specific sarcomas, very few are therapeutically targeted. Instead of utilizing molecular signatures, first-line sarcoma treatment options are still limited to traditional surgery and chemotherapy, and many of the latter remain largely ineffective and are plagued by disease resistance. Currently, the mechanism of sarcoma oncogenesis remains largely unknown, thus necessitating a better understanding of pathogenesis. Although substantial progress has not occurred with molecularly targeted therapies over the past 30 years, increased knowledge about sarcoma biology could lead to new and more effective treatment strategies to move the field forward. Here, we discuss biological advances in the core molecular determinants in some of the most common soft-tissue sarcomas – liposarcoma, angiosarcoma, leiomyosarcoma, rhabdomyosarcoma, Ewing’s sarcoma, and synovial sarcoma – with an emphasis on emerging genomic and molecular pathway targets and immunotherapeutic treatment strategies to combat this confounding disease.
Purpose: Activation of NFE2L2 has been linked to chemoresistance in cell line models. Recently, somatic mutations that activate NFE2L2, including mutations in NFE2L2, KEAP1, or CUL3, have been found to be associated with poor outcomes in patients with non-small cell lung cancer (NSCLC). However, the impact of these mutations on chemoresistance remains incompletely explored.Experimental Design: We investigated the effect of Keap1 deletion on chemoresistance in cell lines from Trp53-based mouse models of lung squamous cell carcinoma (LSCC) and lung adenocarcinoma (LUAD). Separately, we identified 51 patients with stage IV NSCLC with KEAP1, NFE2L2, or CUL3 mutations and a matched cohort of 52 wild-type patients. Time to treatment failure after first-line platinum doublet chemotherapy and overall survival was compared between the two groups.Results: Deletion of Keap1 in Trp53-null murine LUAD and LSCC resulted in increased clonogenic survival upon treatment with diverse cytotoxic chemotherapies. In patients with NSCLC, median time to treatment failure (TTF) after first-line chemotherapy for the KEAP1/NFE2L2/CUL3-mutant cohort was 2.8 months compared with 8.3 months in the control group (P < 0.0001). Median overall survival (OS) was 11.2 months in the KEAP1/NFE2L2/CUL3mutant group and 36.8 months in the control group (P ¼ 0.006).Conclusions: Keap1 deletion confers chemoresistance in murine lung cancer cells. Patients with metastatic NSCLC with mutations in KEAP1, NFE2L2, or CUL3 have shorter TTF and OS after first-line platinum doublet chemotherapy compared with matched controls. Novel approaches for improving outcomes in this subset of patients with NSCLC are therefore needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.