This study was designed to determine the effect of red LEDs during healing and acclimatization process on the survival rate and quality of grafted tomato seedlings. Red LEDs and no light (darkness) were used for treating three rootstock cultivars, which are 'B-Blocking', 'Kanbarune', 'High-power' in healing room. Results showed that survival rates of grafted seedlings in red LEDs were higher than those in no light treatment. Significant variation on survival rates of rootstock cultivars was observed in no light treatment but there was not significant variation in red LEDs treatment. Light treatment also reduced the percentage of infected plants, except for the 'Kanbarune' cultivar. Seedling quality in red LEDs was better than that in no light treatment by improving growth parameters such as plant height, leaf length, leaf width, leaf area, fresh and dry weight of shoot and root. Light treatments and rootstock cultivars did not affect number of leaves, leaf chlorophyll value and T/R ratio of seedlings, but seedlings in red LEDs were significantly more compact than those in no light treatment. Moreover, the root morphology of seedlings such as total root surface area, total root length, and number of toot tips in red LEDs was also greater than that in no light treatment.
The effect of abscisic acid (ABA) on growth, abiotic stress tolerance, and physiology of tomato seedlings was investigated. To examine the effect of ABA concentration on growth and abiotic stresses, six ABA concentrations (0, 10, 50, 100, 150, or 200 mg·L -1 ) were applied by foliar spraying once a day for 10 days. The effect of ABA application number was also studied by using different timing at one ABA concentration (100 mg·L -1 ) once a day for 1, 3, 5, 7, and 9 days. The effect of ABA on physiology of tomato seedlings was examined by using two concentrations (50 and 100 mg·L -1 ) as compared to the control (non-ABA). Foliar application of ABA decreased the growth characteristics of tomato seedlings in a concentration-dependent manner; however, no statically significant difference was observed between the 50 and 100 mg·L -1 treatments. Furthermore, although growth parameters decreased statistically with increasing number of ABA treatments, there was no difference between the 3 and 5 application treatments. Application of ABA enhanced stress tolerance (cold and drought) of tomato seedlings by delaying the starting time of wilting point in drought conditions and reducing the relative ion leakage and chilling injury index in low temperature in all treatments. The transpiration rate decreased significantly, while stomatal diffusive resistance increased significantly with increasing ABA concentration. The relative water content decreased significantly during the period without irrigation. However, relative water content increased with increasing ABA concentration. The ABA enhanced drought tolerance of tomato seedlings by delaying the start time of wilting point from day 3 in the control to day 5 and 7 in the 50 and 100 mg·L -1 treatments, respectively. Integrating this result data, we can determine the ABA's ability to maintain of seedling quality at low temperature and water deficit condition.Additional key words: chilling injury, ion leakage, transpiration rate, water content, wilting point Hort. Environ. Biotechnol. 56 (3):294-304. 2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.