This paper presents the three-dimensional discrete element method (DEM) that was used to study the shear behaviour of fresh and coal fouled ballast in direct shear testing. The volumetric changes and stress-strain behaviour of fresh and fouled ballast were simulated and compared with the experimental results. 'Clump logic' in Particle Flow Code (PFC3D) incorporated in a MATLAB Code was used to simulate irregular shaped particles in which groups of ten to twenty spherical balls were clumped together in appropriate sizes to simulate ballast particles. Fouled ballast with various Void Contaminant Index (VCI), ranging from 20%VCI to 70%VCI, were modelled by injecting a specified number of miniature spherical particles into the voids of fresh ballast. The DEM simulation captures the behaviour of fresh and fouled ballast as observed in the laboratory showing that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increasing of VCI. Furthermore, the DEM also provides insight to the distribution of contact force chains and particle displacement vectors, which cannot be determined experimentally. These micromechanical observations clearly justify the formation of a shear band and the evolution of volumetric changes during shearing. The reduced maximum contact force associated with increased particle contact area due to fouling explains the decreased breakage of fouled ballast. An acceptable agreement was found between the DEM model predictions and laboratory data.
Geogrids are commonly used in railway construction for reinforcement and stabilisation. When railway ballast becomes fouled due to ballast breakage, infiltration of coal fines, dust and subgrade soil pumping, the reinforcement effect of geogrids decreases significantly. This paper presents results obtained from Discrete Element Method (DEM) to study the interface behaviour of coal-fouled ballast reinforced by geogrid subjected to direct shear testing. In this study, irregularly-shaped aggregates (ballast) were modelled by clumping together 10-20 spheres in appropriate sizes and positions. The geogrid was modelled by bonding a large number of small spheres together to form the desired grid geometry and apertures. Fouled ballast with 40% Void Contaminant Index (VCI) was modelled by injecting a predetermined number of miniature spheres into the voids of fresh ballast. A series of direct shear tests for fresh and fouled ballast reinforced by the geogrid subjected to normal shear stresses varying from 15 kPa to 75 kPa were then simulated in the DEM. The numerical results showed a good agreement the laboratory data, indicating that the DEM model is able to capture the behaviour of both fresh and coal-fouled ballast reinforced by the geogrid. The advantages of the proposed DEM model in terms of capturing the correct stress-displacement and volumetric behaviour of ballast, as well as the contact forces and strains developed in the geogrids are discussed. ABSTRACTGeogrids are commonly used in railway construction for reinforcement and stabilisation.When railway ballast becomes fouled due to ballast breakage, infiltration of coal fines, dust and subgrade soil pumping, the reinforcement effect of geogrids decreases significantly. This paper presents results obtained from Discrete Element Method (DEM) to study the interface bahaviour of coal-fouled ballast reinforced by geogrid subjected to direct shear testing. In this study, irregularly-shaped aggregates (ballast) were modelled by clumping together ten to twenty spheres in appropriate sizes and positions. The geogrid was modelled by bonding a large number of small spheres together to form the desired grid geometry and apertures.Fouled ballast with 40% Void Contaminant Index (VCI) was modelled by injecting a predetermined number of miniature spheres into the voids of fresh ballast. A series of direct shear tests for fresh and fouled ballast reinforced by the geogrid subjected to normal shear stresses varying from 15kPa to 75kPa were then simulated in the DEM. The numerical results showed a good agreement the laboratory data, indicating that the DEM model is able to capture the behaviour of both fresh and coal-fouled ballast reinforced by the geogrid. The advantages of the proposed DEM model in terms of capturing the correct stress-displacement and volumetric behaviour of ballast, as well as the contact forces and strains developed in the geogrids are discussed.3
This paper presents the results of laboratory investigations into the deformation of coal fouled ballast stabilized with geogrid at various degrees of fouling. A novel track process simulation apparatus was used to simulate realistic rail track conditions subjected to cyclic loading, and the void contamination index (VCI) was used to evaluate the level of ballast fouling. The experimental results show that coal fines act as a lubricant, causing grains of ballast to displace and rotate, and as a result, accelerate its deformation. However, coal fines also reduce ballast breakage because of a cushioning effect, that is, by reducing interparticle attrition. The inclusion of geogrid at the interface between the layer of ballast and subballast provides additional internal confinement and particle interlocking via geogrid apertures, which reduces deformation. A threshold value of VCI540% is proposed to assist practitioners for conducting track maintenance. If the level of fouling exceeds this threshold, the geogrid reinforcement significantly decreases its effectiveness and the fouled ballast exhibits a premature dilation. Based on the experimental results, an equation incorporating the VCI was proposed to predict the deformation of fresh and fouled ballast. This equation improves track design and assists in favorable decision support for track maintenance. Additionally, the discrete element method (DEM) was also used to capture the deformation of fouled ballast subjected to cyclic loading, whereas the DEM results were compared with experimental observations. Abstract: This paper presents the results of laboratory investigations into the deformation of coal fouled ballast stabilized with geogrid at various degrees of fouling. A novel track process simulation apparatus was used to simulate realistic rail track conditions subjected to cyclic loading, and the void contamination index (VCI) was used to evaluate the level of ballast fouling. The experimental results show that coal fines act as a lubricant, causing grains of ballast to displace and rotate, and as a result, accelerate its deformation. However, coal fines also reduce ballast breakage because of a cushioning effect, that is, by reducing interparticle attrition. The inclusion of geogrid at the interface between the layer of ballast and subballast provides additional internal confinement and particle interlocking via geogrid apertures, which reduces deformation. A threshold value of VCI 5 40% is proposed to assist practitioners for conducting track maintenance. If the level of fouling exceeds this threshold, the geogrid reinforcement significantly decreases its effectiveness and the fouled ballast exhibits a premature dilation. Based on the experimental results, an equation incorporating the VCI was proposed to predict the deformation of fresh and fouled ballast. This equation improves track design and assists in favorable decision support for track maintenance. Additionally, the discrete element method (DEM) was also used to capture the deformation of ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.