In this article, we study an inverse problem with inhomogeneous source to determine an initial data from the time fractional diffusion equation. In general, this problem is ill‐posed in the sense of Hadamard, so the quasi‐boundary value method is proposed to solve the problem. In the theoretical results, we propose a priori and a posteriori parameter choice rules and analyze them. Finally, two numerical results in the one‐dimensional and two‐dimensional case show the evidence of the used regularization method.
In this work, we consider a fractional diffusion equation with nonlocal integral condition. We give a form of the mild solution under the expression of Fourier series which contains some Mittag-Leffler functions. We present two new results. Firstly, we show the well-posedness and regularity for our problem. Secondly, we show the ill-posedness of our problem in the sense of Hadamard. Using the Fourier truncation method, we construct a regularized solution and present the convergence rate between the regularized and exact solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.