In this article, new research on the multi-objective optimization of the process parameters applied to enhance the efficiency in the shoe-type centerless grinding operation for the inner ring raceway of the ball bearing made from SUJ2 alloy steel is presented. The four important input parameters for this process, which included the normal feed rate of fine grinding (Snf), the speed of the workpiece (Vw), the cutting depth of fine grinding (af), and the number of ground parts (Np), were investigated. The aim of the study was to find the most appropriate value set of process parameters in order to, simultaneously minimize the grindstone wear (Gw), maximize the material removal rate (MRR) and the total number of ground parts in a grinding cycle (N’p), while guaranteeing other technology requirements such as surface roughness Ra ≤ 0.5 (µm), oval level Op ≤ 3 (µm), etc. In order to solve the problem, based on the experimental data, in which the grindstone wear was measured online by a measuring system consisting of two pneumatic probes, the optimization of the target functions of Gw, N’p, and MRR and mathematical models that express the dependencies of outcome parameters Gw, Ra, Op, MRR, etc. on the process parameters were determined. Therefore, a global optimal solution of such a discrete and nonlinear multi-objective optimization problem was solved by using a genetic algorithm, presenting the most appropriate process parameters as follows: Snf = 15.38 (µm/s), Vw = 6.00 (m/min), af = 11.76 (µm), and Np = 20 (parts/cycle). In addition, the impact of the four process parameters (Snf, Vw, af, Np) on the wear of the grinding wheel (Gw), the oval level of parts (Op), and the surface roughness of parts (Ra) was evaluated. The discovered technology mode has been applied to the real machining process for the inner ring raceway of the 6208_ball bearing made from SUJ2 alloy steel, and the outcome showed a much better result in comparison with default setting modes, while still ensuring the technology requirements. The difference between the predicted values and the real values of the parameters Gw, Ra, Op, and MRR were controlled within 5% of the ranges.
In the current study, an optimization process of powder-mixed electrical discharge machining (PMEDM) process when machining cylindrically shaped parts made of hardened 90CrSi steel is reported. In this study, SiC powder was mixed into the Diel MS 7000 dielectric solution. Additionally, graphite was chosen as the electrode material. The multi-objective functions were minimizing the surface roughness (SR) and electrode wear rate (EWR) and maximizing the material removal rate (MRR). The used input parameters of the optimization process included the powder concentration, the pulse-on time, the pulse-off time, the pulse current, and the servo voltage. A combination between the Taguchi method and the grey relation analysis (GRA) method with the support of Minitab R19 software was used to design the experiment and analyze the results. It was found that the optimal set of process parameters that can satisfy the above responses are Cp of 0.5 g/L, Ton of 8 µs, Toff of 8 µs, IP of 5 A, and SV of 4 V.
Optimizing the design of a worm gearbox is complex to get due to considering multiple objectives and numerous main design parameters. Hence, a more consistent and robust optimization technique will be considered in obtaining the optimized results. This paper presents the optimization process of the Two-Stage Worm Gearbox with the objective function of minimizing total gearbox cost. Ten main design parameters are chosen as input parameters for evaluating their impacts on the response of the partial gear ratio u2. In this study, the simulation experiments were used, which do not need cost to perform all potential tests. In order to do this, a 2^(10-3) model and using 1/16 fractional model were selected due to the limitation of the built-in function in Minitab@18. Moreover, the screening experiments are purposely used to determine the number of parameters, which has a minor influence on the response. Compared to using the Taguchi technique, the model of 2^11 corresponding to L32 or 32 tests is a simple method to achieve the objectives. The results show that Total gearbox ratio exhibits the biggest effect on the response compared to others. Furthermore, the interactions between these factors to the remaining are significant. The high reliability of the proposed model is verified by simulation experiments. The random tendency of data shows that u2 is not crucially influenced by other than the input parameters. The data in versus order prove that the response is not varied to the time factor. Moreover, the coefficients of adjusted R2 and R2 are both greater than 99 %, it can be concluded that the proposed regression model is appropriate. The proposed optimization process in this study is reliable and the optimal design method can provide a useful reference on performance improvement of other worm gears.
This paper deals with the prediction of surface roughness in manufacturing polycarbonate (PC) by applying Bayesian optimization for machine learning models. The input variables of ultraprecision turning—namely, feed rate, depth of cut, spindle speed, and vibration of the X-, Y-, and Z-axis—are the main factors affecting surface quality. In this research, six machine learning- (ML-) based models—artificial neural network (ANN), Cat Boost Regression (CAT), Support Vector Machine (SVR), Gradient Boosting Regression (GBR), Decision Tree Regression (DTR), and Extreme Gradient Boosting Regression (XGB)—were applied to predict the surface roughness (Ra). The predictive performance of the baseline models was quantitatively assessed through error metrics: root means square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The overall results indicate that the XGB and CAT models predict Ra with the greatest accuracy. In improving baseline models such as XGB and CAT, the Bayesian optimization (BO) is next used to determine their best hyperparameters, and the results indicate that XGB is the best model according to the evaluation metrics. Results have shown that the performance of the models has been improved significantly with BO. For example, the values of RMSE and MAE of XGB have decreased from 0.0076 to 0.0047 and from 0.0063 to 0.0027, respectively, for the training dataset. Using the testing dataset, the values of RMSE and MAE of XGB have decreased from 0.4033 to 0.2512 and from 0.2845 to 0.2225, respectively. Moreover, the vibrations of the X, Y, and Z axes and feed rate are the most significant feature in predicting the results, which is in high accordance with the literature. We find that, in a specified value domain, the vibration of the axes has a greater influence on the surface quality than does the cutting condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.