Drought is a major abiotic stress that negatively impacts plant growth and crop production. Among various techniques used to alleviate drought stress in plants, nanoparticle application is considered to be effective and promising. In this study, the responses of plants treated with iron, copper, cobalt, and zinc oxide nanoparticles (NPs) were analyzed in soybean under drought-induced conditions. The obtained results indicated that these metal-based NPs supported the drought tolerance of NP-treated plants. The desired physiological traits, viz., relative water content, drought tolerance index, and biomass reduction rate, were significantly improved, especially in iron NP-treated plants. At the molecular level, quantitative PCR analysis of several drought-responsive genes revealed a gene-, tissue-, and NP-dependent upregulation of gene expression. Iron NP treatment promoted the expression of all tested genes in roots; additionally, the expression of three drought-responsive genes increased in leaves of all NP-treated plants, while the expression of GmERD1 (Early Responsive to Dehydration 1) was induced in both roots and shoots under the four NP treatments tested. Our findings suggest that NP application can improve drought tolerance of soybean plants by triggering drought-associated gene expression.
Grey mangrove (Avicennia marina) is a traditional medicine used for the treatment of various diseases, including rheumatism and ulcers; however, the compounds responsible for its curative effects remain largely unknown. Triterpenoids are a diverse group of plant-specialized metabolites derived from a common precursor, 2,3-oxidosqualene. Triterpenoids are potentially responsible for the beneficial effects of A. marina; however, the chemical profiles of triterpenoids in A. marina and their biosynthetic genes have not been identified. Cytochrome P450 monooxygenases (P450s) have key roles in the structural diversification of plant triterpenoids by catalyzing site-specific oxidation of triterpene scaffolds. Recent studies have revealed that the CYP716 family represents the most common clade of P450s involved in triterpenoid biosynthesis. In this study, we performed triterpenoid profiling and RNA sequencing of A. marina leaves. Mining of CYP716 family genes and enzymatic activity assays of encoded proteins revealed that CYP716A259 catalyzed oxidation at the C-28 position of the pentacyclic triterpene skeletons of β-amyrin, α-amyrin, and lupeol to produce oleanolic acid, ursolic acid, and betulinic acid, respectively. The other functionally defined P450, CYP716C53, catalyzed the C-2α hydroxylation of oleanolic acid and ursolic acid to produce maslinic acid and corosolic acid, respectively. The possible involvement of CYP716A259 and CYP716C53 in the biosynthesis of these health-benefiting compounds in A. marina leaves, and the possible contribution of the resulting compounds to the reported bioactivities of A. marina leaf extract, are discussed.
Cell and tissue cultures of Catharanthus roseus have been studied extensively as an alternative strategy to improve the production of valuable secondary metabolites. The purpose of this study was to produce C. roseus callus and suspension cell biomass of good quality and quantity to improve the total alkaloids and bis-indole alkaloids. The young stem derived-callus of C. roseus variety Quang Ninh (QN) was grown on MS medium supplemented with 1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) plus 1.5 mg/L kinetin, and the growth rate increased by 67-fold after 20 days. The optimal conditions for maintaining the cell suspension culture were 150 mg/50 mL cell inoculum, a medium pH of 5.5 and a culture temperature of 25 °C. The low alkaloid content in the culture was compensated for by using endophytic fungi isolated from local C. roseus. Cell extracts of endophytic fungi—identified as Fusarium solani RN1 and Chaetomium funicola RN3—were found to significantly promote alkaloid accumulation. This elicitation also stimulated the accumulation of a tested bis-indole alkaloid, vinblastine. The findings are important for investigating the effects of fungal elicitors on the biosynthesis of vinblastine and vincristine, as well as other terpenoid indole alkaloids (TIAs), in C. roseus QN cell suspension cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.