The study aims to assess the applying effectiveness of constructed wetland technology for polluted surface water treatment. The experimental models were operated with 2 hydraulic loadings of 500mL/min/m2 (T1) and 1500mL/min/m2 (T2). The reed grass (Phragmites australis) was selected for the studying process. The surface water resource was removed from the pollutant components (TSS, BOD5, COD) and harmful microorganisms (fecal coliform) which aim to protect the water quality and aquatic ecosystems. The results showed the treatment effectiveness of loading of 500mL/min/m2 is higher than the loading of 1500mL/min/m2, especially in the reed planting trial. In particular, the treatment efficiency of pollutants such as TSS, BOD5, COD reached a high rate of 85%, 90%, and 87%, respectively. In addition, ANOVA statistical analysis showed the effectiveness of water quality parameters belong to two loadings were statistically significant (P<0.05). Thus, the surface water pollutant removal by subsurface vertical flow constructed wetland technology could be contributed to promoting the sustainable agricultural development. Keywords: Constructed wetland, removal, surface water, Phragmites australis, pollution. References: [1] Z. ElZein, A. Abdou, I.A. ElGawad, Constructed Wetlands as a Sustainable Wastewater Treatment Method in Communities, Procedia Environmental Sciences, 34 (2016) 605-617. https://doi.org/10. 1016/j.proenv.2016.04.053. [2] R.H. Kadlec, S.D. Wallace, Treatment Wetlands, CRC Press/Lewis Pucblishers, Boca Raton, FL, 2009.[3] J. Vymazal, Constructed Wetlands for Wastewater Treatment, Water, 2(3) (2010) 530-549. https://doi. org/10.3390/w2030530. [4] L. Volker, E. Elke, L.W. Martina, L. Andreas, M.G. Richard, Nutrient Removal Efficiency and Resource Economics of Vertical Flow and Horizontal Flow Constructed Wetlands, Ecological Engineering, 18(2) (2001) 157-171. https://doi.org/ 10.1016/S0925-8574(01)00075-1. [5] M. Ilda, F. Daniel, P. Enrico, F. Laura, M. Erika, Z. Gabriele, A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems, Environmental Management, 41(1) (2007) 118-129. https://doi.org /10.1007/s00267-007-9001-6. [6] J. Vymazal, The use of constructed wetlands with horizontal sub-surface flow for various types of wastewater, Ecological Engineering, 35 (2009) 1-17. https://doi.org/10.1016/j.ecoleng.2008.08.016. [7] S. Katarzyna, H.G. Magdalena, The use of constructed wetlands for the treatment of industrial wastewater, Journal of Water and Land Development, 34 (2017) 233–240. https://doi.org /10.1515/jwld-2017-0058. [8] S. Dallas, B. Scheffe, G. Ho, Reedbeds for greywater treatment-case study in Santa Elena-Monteverde, Costa Rica, Central America. Ecol. Eng. 23 (2004) 55-61. https://doi.org/10.1016/ j.ecoleng.2004.07.002. [9] Tổng cục Thống kê, Niên giám thống kê Việt Nam, NXB Thống kê, Hà Nội, 2018.[10] Bộ Tài nguyên và Môi trường, Báo cáo hiện trạng môi trường quốc gia – Môi trường nước mặt, Hà Nội, 2012.[11] UBND tỉnh Bình Dương, Quyết định số 3613/QĐ-UBND về việc Quy hoạch tài nguyên nước tỉnh Bình Dương giai đoạn 2016 - 2025, tầm nhìn đến năm 2035, Bình Dương, 2016.[12] M. Mirco, T. Attilio, Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment, Journal of Environmental Science and Health, 48(5) (2013) 568-580. https://doi.org/ 10.1080/10934529.2013.730457. [13] K.J. Havens, H. Berquist, W.I. Priest, Common reed grass, Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future? Estuaries, 26 (2003) 417-422. https://doi.org/10.1007/BF02823718. [14] S. Aboubacar, R. Mohamed, A. Jamal, A. Omar, E. Samira, Exploitation of Phragmites australis (Reeds) in Filter Basins for the Treatment of Wastewater, Journal of Environmental Science and Technology, 11 (2018) 56-67. https://doi.org/10. 3923/jest.2018.56.67. [15] S.I. Abou-Elela, M.S. Hellal, Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus, Ecol. Eng. 47 (2012) 209-213. https://doi.org/10.1016/j. ecoleng.2012.06.044.[16] H. Brix, A.C. Arias, The use of vertical flow constructed welands for on-site treatment of domestic wastewater: New Danish guidelines, Ecological Engineering, 25 (2005) 491-500. https://doi.org/10.1016/j.ecoleng.2005.07.009. [17] J. Puigagut, J. Villasenor, J.J. Salas, E. Becares, J. Garcia, Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparison study, Ecological Engineering, 30 (2007) 312-319. https://doi.org/10.1016/j.ecoleng. 2007.04.005. [18] R. Kadlec, R. Knight, Treatment Wetlands, CRC Press, 1996.[19] L. Yang, H.T. Chang, M.N.L. Huang, Nutrient removal in gravel-and soil-based wetlands microcosms with and without vegetation, Ecological Engineering, 18 (2001) 91-105. https://doi.org/10.1016/S0925-8574(01)00068-4. [20] D. Steer, L. Fraser, J. Boddy, B. Seibert, Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent, Ecological Engineering, 18 (2002) 429-440. https://doi.org/10.1016/S0925-8574(01)00104-5. [21] J. Vymazal, The use of subsurface constructed wetlands for wastewater in Czech Republic: 10 years experience, Ecological Engineering, 18 (2002) 633-646. https://doi.org/10.1016/S0925-8574(02)00025-3. [22] C.S. Akratos, V.A. Tsihrintzis, Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands, Ecological Engineering, 29 (2007) 173-191. https://doi.org/ 10.1016/j.ecoleng.2006.06.013.
The paper presented results of the comparative assessment of nutrient absorption capacity by plants, including reed grass (Phragmites australis L.) and vetiver (Vetiveria zizanioides L.). The constructed wetland models were designed with experiments (i) - Loading 1 (T1): reed grass (S1), vetiver (V1) + control (C1); (ii) - Loading 2 (T2): reed grass (S2), vetiver (V2) + control (C2); (iii) - Load 3 (T3): reed grass (S3), vetiver (V3) + control (C3). The study investigated the surface water quality parameters including nutrients such as TKN (Total Kieldalh Nitrogen), ammonium (NH4-N), nitrite (NO2-N), nitrate (NO3-N), total phosphorus (TP) and phosphate (PO43-). Results showed that there was significantly decreasing change related to pollutant concentration in the tanks. The studied results showed that the water treatment efficiency of Loading 1 (T1) possessed highly nutrient absorption capacities such as nitrogen and phosphorus. Comparing the nitrogen and phosphorus removal efficiency, there was no statistically significant difference between reed grass and vetiver in the same loading (P>0.05). In general, in the same loading levels, the plants’ nutrient removal efficiencies were often higher than the control experiments (P<0.05). The effluent findings illustrated some parameters of water quality that met to National Technical Regulation of surface water quality for agricultural irrigation purposes (QCVN 08-MT:2015/BTNMT). Therefore, the constructed wetland technology obtained highly effective characteristics and supplying the environmental friendly advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.