During last years, lots of the fuzzy rule based classifier (FRBC) design methods have been proposed to improve the classification accuracy and the interpretability of the proposed classification models. Most of them are based on the fuzzy set theory approach in such a way that the fuzzy classification rules are generated from the grid partitions combined with the pre-designed fuzzy partitions using fuzzy sets. Some mechanisms are studied to automatically generate fuzzy partitions from data such as discretization, granular computing, etc. Even those, linguistic terms are intuitively assigned to fuzzy sets because there is no formalisms to link inherent semantics of linguistic terms to fuzzy sets. In view of that trend, genetic design methods of linguistic terms along with their (triangular and trapezoidal) fuzzy sets based semantics for FRBCs, using hedge algebras as the mathematical formalism, have been proposed. Those hedge algebras-based design methods utilize semantically quantifying mapping values of linguistic terms to generate their fuzzy sets based semantics so as to make use of fuzzy sets based-classification reasoning methods proposed in design methods based on fuzzy set theoretic approach for data classification. If there exists a classification reasoning method which bases merely on semantic parameters of hedge algebras, fuzzy sets-based semantics of the linguistic terms in fuzzy classification rule bases can be replaced by semantics - based hedge algebras. This paper presents a FRBC design method based on hedge algebras approach by introducing a hedge algebra- based classification reasoning method with multi-granularity fuzzy partitioning for data classification so that the semantic of linguistic terms in rule bases can be hedge algebras-based semantics. Experimental results over 17 real world datasets are compared to existing methods based on hedge algebras and the state-of-the-art fuzzy sets theoretic-based approaches, showing that the proposed FRBC in this paper is an effective classifier and produces good results.
Forecasting methods based on fuzzy time series have been examined intensively during last years. Three main factors which affect the accuracy of those forecasting methods are length of intervals, the way of establishing fuzzy logical relationship groups, and defuzzification techniques. Many researches focus on optimizing length of intervals in order to improve forecasting accuracies by utilizing various optimization techniques. In the line of that research trend, in this paper, a hybrid particle swarm optimization combined with simulated annealing (PSO-SA) algorithm is proposed to optimize length of intervals to improve forecasting accuracies. The experimental results in comparison with the existing forecasting models show that the proposed forecasting model is an effective forecasting model.
Trong bài báo này, chúng tôi đề xuất một phương pháp thiết kế ngữ nghĩa dạng tập mờ bằng hàm S và đại số gia tử mở rộng cho các từ ngôn ngữ sử dụng trong các hệ dựa trên các luật mờ (FRBS). Áp dụng phương pháp thiết kế này, phương pháp sinh luật từ dữ liệu của C. H. Nguyen và cộng sự và thuật toán tiến hóa (2+2)M-PAES của Knowles và Corne, chúng tôi phát triển một thuật toán xây dựng các FRBS giải bài toán hồi qui. Kết quả thử nghiệm cho thấy thuật toán sinh ra các FRBS có độ chính xác cao hơn các thuật toán được đối sánh. DOI: 10.32913/rd-ict.vol2.no38.527
The fuzzy rule based classifier (FRBC) design methods have intensively been being studied during last years. The ones designed by utilizing hedge algebras as a formalism to generate the optimal linguistic values along with their (triangular and trapezoidal) fuzzy sets based semantics for the FRBCs have been proposed. Those design methods generate the fuzzy sets based semantics because the classification reasoning method still bases on the fuzzy set theory. One question which has been arisen is whether there is a pure hedge algebras classification reasoning method so that the fuzzy sets based semantic of the linguistic values in the fuzzy rule bases can be replaced with the hedge algebras based semantic. This paper answers that question by presenting a fuzzy rule based classifier design method based on hedge algebras with a pure hedge algebras classification reasoning method. The experimental results over 17 real world datasets are compared to the existing methods based on hedge algebras and fuzzy sets theory showing that the proposed method is effective and produces good results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.