Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or position along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. The key type 2 diabetes-related factor that alters AIS geometry is unknown. Here, we tested whether modifying the levels of insulin, glucose, or methylglyoxal, a reactive carbonyl species that is a metabolite of glucose, changes AIS geometry in mature cultures of dissociated postnatal mouse cortex using immunofluorescent imaging of the AIS proteins AnkyrinG and βIV spectrin. Neither insulin nor glucose modification appreciably altered AIS length. Elevation of methylglyoxal produced reversible AIS shortening without cell death. Multi-electrode array recordings revealed a biphasic effect of methylglyoxal on neuronal network activity: an immediate, transient ~300% increase in spiking and bursting rates was followed by a ~20% reduction from baseline at 3 h. AIS length was unchanged at 0.5 h or 3 h after adding methylglyoxal, whereas development of AIS shortening at 24 h was associated with restoration of spiking to baseline levels. Immunostaining for the excitatory neuron marker Ca2+/calmodulin-dependent protein kinase II alpha revealed AIS shortening in both excitatory and inhibitory neuron populations. This suggests that complex mechanisms maintain neuronal network operation after acute exposure to the disease metabolite methylglyoxal. Importantly, our results indicate that methylglyoxal could be a key mediator of AIS shortening during type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.