High nitrite is a known operation parameter to inhibit the biological oxidation of nitrite to nitrate. The phenomenon is traditionally expressed using a Monod-type equation with non-competitive inhibition, in which the reaction associated with the biomass growth is reduced when high nitrite is present. On the other hand, very high nitrite is also known to slay nitrifiers. To clarify the difference between the growth inhibition and the poisoning, cell counting for living microorganisms in the nitrite oxidiser-enriched activated sludge was conducted in batch conditions under various nitrite concentrations together with measurements of biomass chemical oxygen demand (COD) concentration and oxygen uptake rate. The experiments demonstrated that these measureable parameters were all decayed when nitrite concentration exceeded 100-500 mgN/L at pH 7.0 in the system, indicating that nitrite poisoning took place. Biomass growth was recognised in lower range of nitrite which was expressed with growth inhibition only. Based on the response, a kinetic model for the biological nitrite oxidation was developed with a modification of IWA ASM1. The model was further utilised to calculate a possibility to wash out nitrite oxidiser in the aeration tank where a part of the return activated sludge was exposed to high nitrite liquor in a side-stream partial nitritation reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.