Các định lý giới hạn, đặc biệt là các định lý về luật số lớn, đóng một vai trò vô cùng quan trọng trong lý thuyết xác suất và thống kê Toán học. Luật số lớn được Bernoulli thiết lập năm 1713 là nguồn gốc của lý thuyết xác suất hiện đại ngày nay mà dựa trên hệ tiên đề xác suất của Kolmogorov đưa ra vào năm 1933. Các kết quả nổi bật về luật số lớn thông thường có hai dạng là luật yếu số lớn và luật mạnh số lớn. Trong số những thành tựu trên có thể kể đến định lý Kolmogorov cho các biến ngẫu nhiên độc lập cùng phân phối cũng như các kết quả khác của Khintchine, Feller, Birkhoff, Prohorov, Petrov, Martikainen, Gut và nhiều nhà nghiên cứu khác. Xu hướng chung của các bài báo là mở rộng các kết quả cổ điển bằng cách thay thế bởi các điều kiện phụ thuộc yếu hơn, chẳng hạn như phụ thuộc martingale, phụ thuộc Markov, m-phụ thuộc, m-phụ thuộc theo khối, phụ thuộc âm, liên kết âm và phụ thuộc cộng tính trên âm. Trong bài báo này, chúng tôi đưa ra một dạng mở rộng cho luật yếu số lớn Kolmogorov – Feller cho các biến ngẫu nhiên phụ thuộc cộng tính trên âm với điều kiện các biến ngẫu nhiên này bị chặn ngẫu nhiên.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.