Antitumor T cells are subject to multiple mechanisms of negative regulation1–3. Recent findings that innate lymphoid cells (ILCs) regulate adaptive T cell responses4–6 led us to examine the regulatory potential of ILCs in the context of cancer. We identified a unique ILC population that inhibits tumor-infiltrating lymphocytes (TILs) from high-grade serous tumors, defined their suppressive capacity in vitro, and performed a comprehensive analysis of their phenotype. Notably, the presence of this CD56+CD3− population in TIL cultures was associated with reduced T cell numbers, and further functional studies demonstrated that this population suppressed TIL expansion and altered TIL cytokine production. Transcriptome analysis and phenotypic characterization determined that regulatory CD56+CD3− cells exhibit low cytotoxic activity, produce IL-22, and have an expression profile that overlaps with those of natural killer (NK) cells and other ILCs. NKp46 was highly expressed by these cells, and addition of anti-NKp46 antibodies to TIL cultures abrogated the ability of these regulatory ILCs to suppress T cell expansion. Notably, the presence of these regulatory ILCs in TIL cultures corresponded with a striking reduction in the time to disease recurrence. These studies demonstrate that a previously uncharacterized ILC population regulates the activity and expansion of tumor-associated T cells.
Mouse models are a tool for studying the mechanisms underlying complex diseases; however, differences between species pose a significant challenge for translating findings to patients. Here, we used single-cell transcriptomics and orthogonal validation approaches to provide cross-species taxonomies, identifying shared broad cell classes and unique granular cellular states, between mouse and human kidney. We generated cell atlases of the diabetic and obese kidney using two different mouse models, a high-fat diet (HFD) model and a genetic model (BTBR ob/ob), at multiple time points along disease progression. Importantly, we identified a previously unrecognized, expanding Trem2high macrophage population in kidneys of HFD mice that matched human TREM2high macrophages in obese patients. Taken together, our cross-species comparison highlights shared immune and metabolic cell-state changes.
Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd patients. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across patient tumors and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage, and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T-cell-attracting chemokines. By identifying interacting cellular programs, we thus reveal the logic underlying spatially organized immune-malignant cell networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.