We examined the daily inorganic arsenic (i-As) intake from drinking water and rice in 45 households (75 individuals) in the An Giang province, Southern Vietnam. The daily i-As intake ranged from 28-102 μg d(-1), equivalent to the daily dose of 0.6-1.9 μg d(-1) kg((body wt))(-1). Increased As concentrations were observed in human hair in the study location. Approximately 67% (n = 44), 42% (n = 28), and 15% (n = 10) of the hair samples had As levels exceeding 1, 3, and 10 μg g(-1), respectively. The total As concentrations in female and male hair correlated well with the total daily i-As intake. Measurement of As concentrations in the hair of people who were consuming or had previously consumed As from contaminated sources may help predict the onset of negative health effects. We suggested an application of the Bayes's theorem to calculate the probability that an individual in a population will acquire a negative health effect, given that the concentration of arsenic in the subject's hair has been determined.
High rates of phosphorus (P) currently being applied to soils for the production of vegetables in the Mekong Delta, Vietnam, has led to concern regarding negative effects on the economy and the environment. This research presents a comprehensive study on the determination of P supplying capacity in this region of Vietnam to examine the possibility of reducing P fertilizer input. In total, 120 soil samples were collected to evaluate total P and Bray 1 available P in the soils. Phosphorus maximum sorption, degree of P saturation, P release, and the effect of P fertilizer on corn (Zea mays L.) yield in greenhouses and fields were also determined. Total P concentrations in 57% of the soil samples evaluated yielded high P concentrations (>560 mg P/kg), while 74% of the samples had high Bray 1 available P concentrations (>20 mg P/kg soil). Maximum P sorption ranged from 149 to 555 mg P/kg soil, respectively, and had negative correlation with available P (r = −0.63*). The percentages of P saturation ranged from 0.63% to 5.5% and correlated with available P (r = 0.98**). Maximum P release ranged from 1.2 to 62 mg P/kg soil, respectively, and correlated with available P (r = 0.96**). Corn grown in soils with available P concentrations >15 mg P/kg did not respond to P fertilizer in greenhouse or field experiments. We conclude that many farmers in this region can reduce P fertilizer input, thus increasing their profits and reducing negative environmental impacts associated with excess soil P for sustainable agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.