Nanowire-shaped silver have been synthesized by the polyol process in ethylene glycol as a reductant, polyvinylpyrrolidone (PVP) as a stabilizer, using a microwave technique. The products were characterized by transmission electron microscopy (TEM). The presence of sodium chloride in the polyol reduction of silver nitrate facilitated the production of silver nanowires. These wires were formed quickly (in approximately 3 minutes microwave heating). It was found that morphologies and sizes of silver nanostructures depended strongly on such experimental parameters as concentrations of PVP, NaCl, AgNO 3 , and heating time. The chloride ion was necessary to synthesize nanowire-shaped silver, and the sodium chloride likely controlled the rate of silver(I) reduction and initial seed formation.
ZnO was prepared by hydrothermal method. The result of scanning electron microscopy showed that the materials had nano rod structures. Ag-doped ZnO was prepared by UV-photoreduction. Crystalline phases and optical absorption of the prepared Ag-doped ZnO samples were determined by X-ray diffraction, Raman spectrum, UV-visible, and UVphotoreduction spectrophotometer. X-ray analyses revealed that Ag was doped ZnO crystallizes in hexagonal wurtzite structure. The incorporation of Ag + in the site of Zn 2+ provoked an increase in the size of nanocrystals as compared to pure ZnO. The photocatalytic and photoluminescence properties of materials were considered.
Highly responsive methanol sensors working at low temperatures are developed using hierarchical ZnO nanorods decorated by Pt nanoparticles. The sensing materials are fabricated following a 3-step process: electrospinning of ZnO nanofibers, hydrothermal growth of hierarchical ZnO nanorods on the nanofibers and UV-assisted deposition of Pt nanoparticles. The morphology, structure and properties of the materials are examined by field-effect scanning electron microscopy, transmission electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, UV–Vis absorption spectroscopy, and electrical measurements. The methanol sensing performance is investigated at different working temperatures in the range of 110 °C–260 °C. It is observed that the surface modification of the ZnO hierarchical nanorods by Pt nanoparticles results in a remarkable enhancement of the sensing response toward methanol, which can reach approximately 19 500 times higher than that of the unmodified ZnO nanorods-based sensor. In addition, this modification enables lower working temperatures with an optimum range of 140 °C–200 °C. Based on the achieved results, a methanol sensing mechanism of the Pt/ZnO structure is proposed.
ZnO was prepared by hydrothermal method. The result of scanning electron microscopy showed that the materials had nanorod structures. Ag-doped ZnO was prepared by UV-photoreduction respectively. Crystalline phases and optical absorption of the prepared samples were determined by X-ray diffraction, Raman spectrum and UV-visible spectrophotometer. X-ray analyses reveals that Ag doped ZnO crystallises in hexagonal wurtzite structure. The incorporation of Ag + in the site of Zn 2+ provoked an increase in the size of nanocrystals as compared to pure ZnO. The morphologies of materials have been investigated by using scanning electron microscopy. The photocatalytic property and photoluminescence property of materials were considered.
Dây khai (Coptosapelta flavescens Korth. Rubiaceae) là một dược liệu quý hiếm, giàu tiềm năng với các tác dụng sinh học khác nhau, trong đó có khả năng kháng vi sinh vật. Với mục đích cung cấp thêm cơ sở khoa học, nghiên cứu thực hiện khảo sát hoạt tính kháng vi sinh vật in vitro của các phân đoạn Cao khai Coptosapelta flavescens Korth. (Rubiaceae family). Sử dụng Cao khai thu thập tại tỉnh Ninh Thuận vào tháng 03/2021 để chiết xuất các cao phân đoạn với các dung môi có độ phân cực tăng dần, bao gồm n –hexan, chloroform, dichloromethan, ethyl acetat và methanol. Đánh giá hiệu quả kháng vi sinh vật của cao phân đoạn bằng phương pháp khuếch tán đĩa thạch dựa vào đường kính vùng ức chế (mm) và sử dụng phương pháp pha loãng trong môi trường thạch để xác định giá trị nồng độ tối thiểu ức chế vi sinh vật (MIC) của cao tiềm năng. Kết quả thu được cho thấy, cao n hexan và cao methnol không thể hiện hoạt tính kháng vi sinh vật. Cao chloroform và cao dichloromethan thể hiện hoạt tính kháng khuẩn yếu, chủ yếu tác động trên chủng vi khuẩn Gram dương. Cao ethyl acetat có khả năng kháng tốt trên 6 chủng vi sinh vật thử nghiệm. Đặc biệt, cao ethyl acetat kháng tốt trên vi khuẩn S. aureus ATCC 25923 – tác nhân thường được phân lập trong các ổ nhiễm trùng da, mô mềm với giá trị MIC đạt 0,512 mg/mL và đường kính vùng ức chế là 22,67 mm. Kết quả nghiên cứu tạo tiền đề để phát triển các dạng bào chế dùng ngoài để rửa vết thương nhiễm trùng.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.