e analytic expressions for the thermodynamic and elastic quantities such as the mean nearest neighbor distance, the free energy, the isothermal compressibility, the thermal expansion coefficient, the heat capacities at constant volume and at constant pressure, the Young modulus, the bulk modulus, the rigidity modulus, and the elastic constants of binary interstitial alloy with bodycentered cubic (BCC) structure, and the small concentration of interstitial atoms (below 5%) are derived by the statistical moment method. e theoretical results are applied to interstitial alloy FeC in the interval of temperature from 100 to 1000 K and in the interval of interstitial atom concentration from 0 to 5%. In special cases, we obtain the thermodynamic quantities of main metal Fe with BCC structure. Our calculated results for some thermodynamic and elastic quantities of main metal Fe and alloy FeC are compared with experiments.
This paper studies on the dependence of the mean nearest neighbor distance, the Young modulus E, the bulk modulus K, the rigidity modulus G and the elastic constants C11, C12, C44 on temperature, pressure, the concentration of substitution atoms and the concentration of interstitial atoms for alloy AuCuSi (substitution alloy AuCu with interstitial atom Si) with FCC structure by the way of the statistical moment method (SMM). The numerical results for alloy AuCuSi are compared with the numerical results for main metal Au, substitution alloy AuCu, interstitial alloy AuSi, other calculated results and experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.