A ceramic fuel cell is an all solid-state energy conversion device that produces electricity by electrochemically combining fuel and oxidant gases across an ionic conducting oxide. Current ceramic fuel cells use an oxygen-ion conductor or a proton conductor as the electrolyte and operate at high temperatures ( >6OO0C). Ceramic fuel cells, commonly referred to as solid-oxide fuel cells (SOFCs), are presently under development for a variety of power generation applications. This paper reviews the science and technology of ceramic fuel cells and discusses the critical issues posed by the development of this type of fuel cell. The emphasis is given to the discussion of component materials (especially, ZrO, electrolyte, nickel/ZrO, cermet anode, LaMnO, cathode, and LaCrO, interconnect), gas reactions at the electrodes, stack designs, and processing techniques used in the fabrication of required ceramic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.