This study investigated experimental bearing capacity of corroded reinforced concrete beams. Six testing beams were made of concrete having compressive strength of 25 MPa, with the dimensions of 1200 x 80 x 120 mm. They were divided into two groups depending of tension reinforcement ratio. Of which, two beams were used as the controls, whereas the other fours ones having tension reinforcement were subjected to corrosion by the electrochemical accelerated corrosion method. After accelerated corrosion, the beams were tested under monotonic loading to investigate their performance. All the tested beams were failed in flexural failure mode corresponding to spalling of cover concrete. Test results showed that as corrosion rate in tension reinforcement increased, the lower cracking load and the displacement at the cracking load were observed. As the corrosion rate of tension reinforcement ranging from 7.5% to 8.3%, it had little effect on the peak load. As the corrosion rate increased further, approximately 10.8% and 14.1% in this study, the peak load decreased significantly. The higher the corrosion rate, the lower the displacement of corroded beams. Moreover, as corrosion rate of tension reinforcement increased the number of concrete cracks and their spacing reduced, and the width of cracks was generally larger.
Keywords: reinforced concrete beam; electrochemical accelerated corrosion; corrosion rate; load-carrying capacity; displacement; concrete cracking.
Received 08 January 2019, Revised 16 January 2019, Accepted 17 January 2019
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.