This study was aimed to develop a tissue engineering scaffold by incorporation of Bombyx mori silk fiber (BMSF) and agar. This promised the improvement in enhancing their advantageous properties as well as limiting their defects without occurring chemical reactions or crosslink formation. The morphology and chemical structure of scaffolds were observed using scanning electron microscope (SEM) observation and Fourier transform infrared (FT-IR) spectra. The SEM results show that scaffolds containing BMSF have microporous structures, which are suitable for cell adhesion. Agar scaffolds, by contrast, had much more flat morphology. FT-IR spectra confirm that no modifications to BMSF happened in scaffolds, which indicates that there was no chemical reaction or crosslink formation between silk and agar in this process. Furthermore, the biocompatibility of scaffolds was performed in the mouse's subcutaneous part of the dorsal region for 15 days, followed by Haematoxylin and Eosin (H&E) staining. H&E staining results demonstrate that scaffolds had good biocompatibility and there was no sign of the body rejection in all of samples. The results from animal study show that SA scaffolds have the most stable structure for cell adhesion compared with those single materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.