This study aims to investigate the adsorption capacity of ammonium NH4+, nitrite NO2- and nitrate NO3- onto rice husk biochar (RHB) obtained from 550 °C pyrolysis temperature in the context of using low-cost absorbent for recirculating aquaculture system (RAS). Raw RHB at its original size 5–8 mm has been choosen for testing its adsorption capacity as well as several key material properties (pHPZC, surface area, and elemental analysis). From surface functional group analysis, there existed the O–H group (at frequency 3443 cm-1), –CH3 (2360 cm-1), and either –C=O or C=C group (in the range of frequency 1600–1650 cm-1) as well as –COOH (1456 cm‒1) that helped enhance chemical adsorption. The experimental adsorption data has been roughly consistent with Langmuir and Freundlich models that used to calculate the maximum saturated monolayer adsorption capacity Q0max of ammonium, nitrite, and nitrate were 0.1003, 0.2477, and 0.1290 mg/g respectively. Therefore, RHB could be a potential candidate for biofilter application in both targets cost-efficient and sustainable that worth applied at scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.