This paper carries out free and forced vibration analysis of piezoelectric FGM plates resting on two-parameter elastic foundations placed in thermal environments. By employing the third-order shear deformation theory and the finite element method, this work establishes free and forced vibration equations of piezoelectric FGM plates, where the materials are assumed to be varied in the thickness directions, and the mechanical properties depend on the temperature. Then, comparative examples are conducted to verify the proposed theory and mathematical model, and the results of this study and other methods meet a very good agreement. Then, effects of geometrical and material properties such as the feedback coefficient, voltage, volume fraction index, temperature as well as the parameters of elastic foundations on free and forced vibration of the plates are investigated, and the conclusions are given out to provide the effective direction for the design and practical use of these structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.