One of the inherent weaknesses of the EEG signal processing is noises and artifacts. To overcome it, some methods for prediction of epilepsy recently reported in the literature are based on the evaluation of chaotic behavior of intracranial electroencephalographic (EEG) recordings. These methods reduced noises, but they were hazardous to patients. In this study, we propose using Lyapunov spectrum to filter noise and detect epilepsy on scalp EEG signals only. We determined that the Lyapunov spectrum can be considered as the most expected method to evaluate chaotic behavior of scalp EEG recordings and to be robust within noises. Obtained results are compared to the independent component analysis (ICA) and largest Lyapunov exponent. The results of detecting epilepsy are compared to diagnosis from medical doctors in case of typical general epilepsy.
The discovery of antibiotics is considered to be one of the greatest medical achievements in the early part of 20th. Over the past six decades, these ‘wonder drugs’ have played a critical role in reducing the global burden of communicable diseases. As a country in the tropical zone, Vietnam faces numerous infectious disease outbreaks every year. In addition, the overuse of antibiotics in healthcare and the misuse of antibiotics as growth promoter in agriculture these past decades have led to serious antibiotic-resistance in bacterial pathogens of human, crops and livestock in Vietnam. This poses an urgent need for alternative strategies to fight against these pathogens. Lysins are phage-encoded peptidoglycan hydrolases which were recently demonstrated the strong potential in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. These enzymes when applied exogenously to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell and therefore promise an effective alternative therapy against antibiotic-resistant bacterial pathogens. In this study, we applied the DNA technology to produce a recombinant S. aureus lysin (LysK). LysK was PCR amplified from phage S. aureus and cloned into a pET32a(+) expression vector. The recombinant fusion protein (LysK-Trx) was successfully expressed in E. coli, purified through nickel column chromatography, and further digested with Thrombin protease. The cleaved protein (intact LysK) was purified by nickel column again. The recombinant LysK was tested for its ability to kill S. aureus by a spot inoculation assay. The results showed that recombinant LysK induced the lysis of host bacteria, indicating that the protein was expressed and functionally active. Data from the current study can be used to develop therapeutic tools for treating diseases caused by drug-resistant S. aureus strains in Vietnam.
The electroencephalogram (EEG) is used as aclinical examination to diagnose the brain activities and brain functions. The EEG processing and analysis can support clinicians to diagnose and to detect a number of neurological diseases such as epilepsy, sleep schizophrenia, sleep disorder, mental fatigue etc. The paper introduces some advanced techniques and its combination for EEG processing such as independent component analysis (ICA), time-frequency analysis, blind source separation, chaos-fractal analysis applying to noise preprocessing and quantitative evaluation EEG signals in order to detect and study some characteristics and behaviors of selected neurological diseases
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.