A series of novel naphthoquinone-fused podophyllotoxins containing fluoro and trifluoromethyl substituents were synthesized in a medium with good yields using two different synthetic approaches: microwave-assisted four-component reactions of 2-hydroxy-1,4-naphthoquinone, tetronic acid, fluorinated arylaldehydes, and ammonium acetate, and microwave-assisted three-component reactions of 2-amino-1,4-naphthoquinone, tetronic acid, and fluorinated arylaldehydes. The structures of all products were confirmed by spectral analysis. Together, cytotoxicity assessment of the products against four human cancer cell lines (human carcinoma [KB], human hepatocellular carcinoma [HepG2], lung cancer [A549], breast carcinoma [MCF7], and human embryonic kidney [Hek-293]) was performed by MTT assay. Among the obtained compounds, compound 7f turned out to be the most potent anticancer agent with significant cytotoxic activity against KB, HepG2, and MCF cancer cell lines.
Novel 1,4-pyranonaphthoquinone derivatives were successfully synthesized via the microwave-assisted three-component reaction of 1,4-naphthoquinone, malononitrile, and various arylaldehydes in ethanol in the presence of 4-(dimethylamino)pyridine (DMAP) as a catalyst, and subsequently evaluated in terms of their antimicrobial and antifungal activities. This synthetic procedure has the notable advantages of environmental friendliness, short reaction time, good yield, and convenient operation.
The human amniotic membrane is a highly abundant and readily available tissue that may be useful for regenerative medicine and cell therapy. The amniotic membrane stem cells can differentiate into multiple cell lineages; they have low immunogenicity and anti-inflammatory functions. This research aims to examine the protocols for the isolation of human amniotic membrane stem cells, including their phenotypic characterization and in vitro potential for differentiation toward keratinocytes. Human placentas were obtained from selected cesarean-sectioned births. We isolated amniotic stem cells by trypsin and collagenase B digestion and centrifuged with Percoll. After monolayer expansion of adherent cells, the cells were characterized by immunocytology with octamer-binding transcription factor 4 and differentiated into keratinocytes by treating the cells with insulin, hydrocortisone, BMP-4, and vitamin C. Protocol for isolation of stem cells from amniotic membrane has high efficiency. Differentiation markers of stem cells into keratinocytes, such as vimentin, cytokeratin (CK) 14, and CK19, were determined by reverse transcription-polymerase chain reaction increase over time in culture. Stem cells isolated from the amniotic membrane can differentiate into keratinocytes. It has opened the prospect of using stem cells to regenerate skin and clinical applications.
In practice, some components in large structures such as the connecting rods between the rotating parts in the engines, turbines, and so on, can model as beam structures rotating around the fixed axis and subject to the axial compression load; therefore, the study of mechanical behavior to these structures has a significant meaning in practice. This paper analyzes the vibration responses of rotating FGM beams subjected to axial compressive loads, in which the beam is resting on the two-parameter elastic foundation, taking into account the initial geometrical imperfection. Finite element formulations are established by using the new shear deformation theory type of hyperbolic sine functions and the finite element method. The materials are assumed to be varied smoothly in the thickness direction of the beam based on the power-law function with the porosity. Verification problems are conducted to evaluate the accuracy of the theory, proposed mechanical structures, and the calculation programs coded in the MATLAB environment. Then, a parameter study is carried to explore the effects of geometrical and material properties on the vibration behavior of FGM beams, especially the influences of the rotational speed and axial compressive load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.