Ventilator-associated pneumonia (VAP) is a serious healthcare-associated infection that affects up to 30 % of intubated and mechanically ventilated patients in intensive care units (ICUs) worldwide. The bacterial aetiology and corresponding antimicrobial susceptibility of VAP is highly variable, and can differ between countries, national provinces and even between different wards in the same hospital. We aimed to understand and document changes in the causative agents of VAP and their antimicrobial susceptibility profiles retrospectively over an 11 year period in a major infectious disease hospital in southern Vietnam. Our analysis outlined a significant shift from Pseudomonas aeruginosa to Acinetobacter spp. as the most prevalent bacteria isolated from quantitative tracheal aspirates in patients with VAP in this setting. Antimicrobial resistance was common across all bacterial species and we found a marked proportional annual increase in carbapenem-resistant Acinetobacter spp. over a 3 year period from 2008 (annual trend; odds ratio 1.656, P = 0.010). We further investigated the possible emergence of a carbapenem-resistant Acinetobacter baumannii clone by multiple-locus variable number tandem repeat analysis, finding a blaOXA-23-positive strain that was associated with an upsurge in the isolation of this pathogen. We additionally identified a single blaNDM-1-positive A. baumannii isolate. This work highlights the emergence of a carbapenem-resistant clone of A. baumannii and a worrying trend of antimicrobial resistance in the ICU of the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam.
Following analysis of eight phages under in vitro, growth chamber and greenhouse conditions with the bacterial spot of tomato pathogen Xanthomonas perforans, there was no correlation between disease control efficacy and in vitro phage multiplication, in vitro bacterial suppression, or in vivo phage multiplication in the presence of the host, but there was a low correlation between phage persistence on the leaf surface and disease control. Two of the 8 virulent phages (ΦXv3-21 and ΦXp06-02) were selected for in depth analysis with two X. perforans (Xp06-2-1 and Xp17-12) strains. In in vitro experiments, phage ΦXv3-21 was equally effective in infecting the two bacterial strains based on efficiency of plating (EOP). Phage ΦXp06-02, on the other hand, had a high EOP on strain Xp06-2-1 but a lower EOP on strain Xp17-12. In several growth chamber experiments, ΦXv3-21 was less effective than phage ΦXp06-02 in reducing disease caused by strain Xp06-2-1, but provided little or no disease control against strain Xp17-12. Interestingly, ΦXp06-02 could multiply to significantly higher levels on the tomato leaf surface than phage ΦXv3-21. The leaf surface appears to be important in terms of the ability of certain bacteriophages to multiply in the presence of the bacterial host. ΦXv3-21, when applied to grapefruit leaves in combination with a bacterial host, was unable to multiply to high levels, whereas on tomato leaflets the phage multiplied exponentially. One plausible explanation is that the leaf surface may be an important factor for attachment of certain phages to their bacterial host.
Aims: To identify rhizobacteria from the Mekong Delta of Vietnam, which can systemically protect watermelon against Didymella bryoniae and elucidate the mechanisms involved in the protection conferred by isolate Pseudomonas aeruginosa 231‐1.
Methods and Results: Bacteria were isolated from watermelon roots and their antagonistic ability tested in vitro. Of 190 strains, 68 were able to inhibit D. bryoniae by production of antibiotics. Four strains were able to reduce foliar infection by D. bryoniae when applied to watermelon seeds before sowing. Strain Ps. aeruginosa 231‐1 was chosen for investigations of the mechanisms involved in protection and ability to control disease under field conditions. In the field, the bacterium was able to significantly reduce disease in two consecutive seasons and increase yield. Furthermore, it colonized watermelon plants endophytically, with higher numbers in plants infected by D. bryoniae than in noninoculated plants. To elucidate the mechanisms involved in protection, the infection biology of the pathogen was studied in bacterially treated and control plants. Pseudomonas aeruginosa 231‐1 treatment inhibited pathogen penetration and this was associated with hydrogen peroxide accumulation, increased peroxidase activity and occurrence of new peroxidase isoforms, thus indicating that resistance was induced.
Conclusions: The endophytic bacterium Ps. aeruginosa 231‐1 can control D. bryoniae in watermelon by antibiosis and induced resistance under greenhouse and field conditions.
Significance and Impact of the Study: These findings suggest that rhizobacteria from native soils in Vietnam can be used to control gummy stem blight of watermelon through various mechanisms including induction of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.