Metamaterial (MM) is emerging as a promising approach to manipulate electromagnetic waves, spanning from radio frequency to the optical region. In this paper, we employ an effect called electromagnetically-induced transparency (EIT) in all-dielectric MM structures to create a narrow transparent window in opaque broadband of the optical region (580-670 nm). Using dielectric materials instead of metals can mitigate the large non-radiative ohmic loss on the metal surface. The unit-cell of MM consists of Silicon (Si) bars on Silicon dioxide (SiO\(_{2}\)) substrate, in which two bars are directed horizontally and one bar is directed vertically. By changing the relative position and dimension of the Si bars, the EIT effect could be achieved. The optical properties of the proposed MM are investigated numerically using the finite difference method with commercial software Computer Simulation Technology (CST). Then, characteristic parameters of MM exhibiting EIT effect (EIT-MM), including Q-factor, group delay, are calculated to evaluate the applicability of EIT-MM to sensing and light confinement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.