L-asparaginase (EC 3.5.1.1), a therapeutic enzyme used in the treatment of childhood acute lymphoblastic leukemia (ALL). Hence, the goal of this work is study the expression and evaluation of hydrolysis activity of native sequence (X12746) encoding for L-asparaginase from Erwinia chrysanthemi NCPBB1125 in the popular expression system Pichia pastoris. The sequence of asn encoded for mature protein was expressed in P. pastoris SMD1168 and X33. SDS-PAGE analysis showed recombinant L-asparaginase was secreted efficiently. Stable and high hydrolysis activity of extracellular L-asparaginase in P. pastoris SMD1168 making it a potential candidate to produce recombinant protein. After purification, a specific band whose appearance approximately 45 kDa indicating the glycosylated protein with specific activity by 6.251 Umg-1 and about 3 folds purifications. L-asparaginase (EC 3.5.1.1), một loại enzyme được sử dụng trong điều trị bệng ung thư bạch cầu mãn tính ở trẻ em. Mục tiêu của nghiên cứu này là biểu hiện và đánh giá hoạt tính thủy phân của L-asparaginase mã hóa bởi đoạn gene (X12746) tương ứng từ Erwinia chrysanthemi NCPBB1125 được biểu hiện trong nấm men Pichia pastoris. Gene đã được cắt signal peptide và biểu hiện trong P. pastoris SMD1168 and X33. Qua phân tích kết quả điện di SDS-PAGE của môi trường sau lên men, L-asparaginase tái tổ hợp được tìm thấy trong dịch ngoại bào của P. pastoris. Với khả năng sản xuất protein có hoạt tính cao hơn so với chủng P. pastoris X33, SMD1168 được lựa chọn để biểu hiện L-asparaginase tái tổ hợp. Sau khi tinh sạch, sự xuất hiện của một băng có kích khối lượng phân tử xấp xỉ 45 kDa trên điện di SDS-PAGE cho thấy protein tái tổ hợp đã bị glycosyl hóa với hoạt tính riêng 6.251 Umg-1 và đạt độ sạch 3.471 lần.
Prodigiosin (Pg), a secondary metabolism produced by numerous bacterial species, is known as anticancer, antibacterial, antifungal, immunosuppressant, antioxidant, antimalarial properties. Pg has been tested for antitumor activity in many different cancer cell lines but studies in LU-1, KB cell lines, and tumor-bearing mice are still limited. In this study, Serratia marcescens QBN VTCC 910026 strain (GenBank: KX674054.1) was mutated using Ethyl Methanesulfonate (EMS) to increase the production of Pg. One strain known as EMS 5 was capable of increasing prodigiosin biosynthetic yield by 52% when compared to the wild-type strain. Red bacterial pigmented colonies containing Pg were collected from solid media, lysed with acetone, purified with toluene: ethyl acetate at a ratio of 9: 1 (v/v), and then used to evaluate the potential anticancer activity. The purity of Pg was confirmed using a high-performance liquid chromatography (HPLC) method which indicated a 98% rate. Pg chemical formula which was determined using 1H-NMR and 13C-NMR spectroscopy, confirmed as prodigiosin (Pg). Human breast cancer cell lines MCF-7, oropharyngeal cancer KB, and particularly lung cancer LU-1 in vitro were used to test the anticancer activity of purified Pg compound. It showed a strong inhibitory ability in all the cancer cell lines. Furthermore, the isolated Pg had capable of inhibiting tumor growth, the tumor volume decreased by 36.82%, after 28 days. The results indicated that the bacterial prodigiosin from variants Serratia marcescens QBN VTCC 910026 strain is an encouraging fragment suitable for therapeutic applications.
Antibodies have been in the frontline of anticancer research during the last few decades, since a number of different ways have been discovered to utilize them as parts or main components of anticancer drugs. Antibodies are used as the only component of some anticancer drugs, but they can also be conjugated with a variety of substances. Antibody engineering methods such as humanization, chimerization and Fc engineering are applied in order to modify their properties according to the requirements of anticancer drug application. Given the continuous advances in biology and informatics, the role of antibodies in anticancer treatment is expected to be prominent.
Background: Fusarium sp. and Rhizoctonia sp. fungi have been always threats to short-term crops. In Vietnam, corn and soybean suffer serious losses annually. Therefore, it is necessary to utilize an environmentally friendly antifungal compound that is highly effective against phytopathogenic fungi. Pseudomonas sp. is a popular soil bacterial strain and well known for its high antifungal activity. Objectives: This study was carried out to evaluate and assess the antifungal activity of a local bacterial strain namely DA3.1 that was later identified as Pseudomonas aeruginosa. This would be strong scientific evidence to develop an environmentally friendly biocide from a local microorganism strain for commercial use. Methods: The antifungal compound was purified from ethyl acetate extraction of deproteinized cell culture broth by a silica gel column (CH2Cl2/MeOH (0% - 10% MeOH)). The purity of the isolated compound was determined by HPLC, and its molecular structure was elucidated using spectroscopic experiments including one-dimensional (1D) (1H NMR, 13C NMR, DEPT) and two-dimensional (2D) (HMBC and HSQC) spectra. The activity of the purified compound against Fusarium sp. and Rhizoctonia sp. fungi was measured using the PDA-disk diffusion method, and its growth-promoting ability was evaluated using the seed germination test of corn and soybean. Results: The results showed that the antifungal compound produced by Pseudomonas aeruginosa DA3.1 had a retention factor (Rf) of 0.86 on thin layer chromatography (TLC). Based on the evidence of spectral data including proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), distortionless enhancement by polarization transfer (DEPT), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum coherence (HSQC), the chemical structure was elucidated as phenazine-1-carboxylic. The purified compound showed inhibitory activity against F. oxysporum and R. solani and exhibited the ability of the germination of corn and soybean seeds. The results revealed the benefit of native P. aeruginosa DA3.1 and phenazine-1-carboxylic acid for use as a biocontrol agent, as well as a plant growth promoter. Conclusions: The antifungal compound isolated from local Pseudomonas DA3.1 was identified as phenazine-1-carboxylic acid that posed high antifungal activity and was a plant germination booster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.