Abstract. We consider an integrable Hamiltonian system with n-degrees of freedom whose first integrals are invariant under the symplectic action of a compact Lie group G. We prove that the singular Lagrangian foliation associated to this Hamiltonian system is symplectically equivalent, in a Gequivariant way, to the linearized foliation in a neighborhood of a compact singular non-degenerate orbit. We also show that the non-degeneracy condition is not equivalent to the non-resonance condition for smooth systems.Résumé. On considère un système hamiltonien intégrableà n degrés de liberté et une action symplectique d'un groupe de Lie compact G qui laisse invariantes les intégrales premières. On prouve que le feuilletage lagrangien singulier attachéà ce système hamiltonien est symplectiquementéquivalent, de façon Gequivariante, au feuilletage linearisé dans un voisinage d'une orbite compacte singulière. On démontre aussi que la condition de non-dégénéréscence n'est paséquivalenteà la non-résonance pour les systèmes différentiables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.